

Relation between Surface Flux Measurements and Hydrologic Conditions in a Subtropical Scrubland during the North American Monsoon

Enrique R. Vivoni¹, Christopher J. Watts², Julio C. Rodriguez², Jaime Garatuza-Payan³, Luis A. Mendez-Barroso¹, Enrico A. Yepez⁴, Juan Saiz-Hernandez² and David J. Gochis⁵

- (1) New Mexico Institute of Mining and Technology, Socorro, NM.
- (2) Universidad de Sonora, Hermosillo, Sonora, Mexico.
- (3) Instituto Tecnologico de Sonora, Ciudad Obregon, Sonora, Mexico.
- (4) University of New Mexico, Albuquerque, NM.
- (5) National Center for Atmospheric Research, Boulder, CO.

Motivation

The North American Monsoon System (NAMS) is a seasonal change in atmospheric circulation leading to increased summer precipitation (July, August, September) in the southwestern US and northwestern Mexico.

CPC Daily Gridded Precipitation Analysis for US and Mexico 1 degree by 1 degree, Monthly Climatology, 1970-1999

Motivation

Precipitation during the NAMS leads to a strong vegetation response consisting of leaf-on of subtropical deciduous species over the complex topography in western Mexico.

SPOT VEGETATION 2 Product, 1-km resolution 10-day composite, Normalized Difference Vegetation Index

Motivation

Seasonality in precipitation and vegetation has potential impacts on land-atmosphere interactions, runoff production and groundwater recharge.

Winter Conditions

Summer Monsoon Conditions

Photographs from 15-m Eddy Covariance Tower in Deciduous Subtropical Forest in Tesopaco, Sonora, Mexico

Outline

Hydrology and Surface Fluxes in NAMS Ecosystem:

- 1. Seasonally-Green Study Site and Field Campaign: Experiment design, instrumentation and observations.
- 2. Surface Turbulent Fluxes and Footprint Conditions:

 Ground and remotely-sensed hydrological fluxes.
- 3. Evapotranspiration Controls and Partitioning:

 Relation between ET and footprint soil moisture.

Study Region

monsoon climate, seasonally-green

vegetation and ephemeral streams.

SMEX 2004: NAME 2004:

Soil Moisture Field Campaign **Eddy Covariance Tower Network Sonora IRES:** Expanded Hydromet Network (2006-2008) Eddy Covariance Experiments

Study Region

ASTER 30-m DEM and Sampling Plot Locations at Tower Site

Vegetation Changes at Tower Site

June Period

July Period

Eddy Covariance Tower Site in Subtropical Scrubland

- We installed an EC tower in 2004 in Rayon, Sonora as part of a network of precipitation and soil moisture stations.
- Measurements at EC tower include:
 - Precipitation (2 sensor types)
 - Soil moisture (3 depths at 1 site)
 - Net Radiation and components
 - Ground and Sensible Heat Fluxes
 - Latent Heat Flux
 - Water vapor and CO₂ Profiler (4 heights)
- Soil profile characeristics from pit:
 - Loamy sand (0 20 cm)
 - Sandy loam (20 50 cm)
- Subtropical scrubland ecosystem, known as <u>Sinaloan Thornscrub</u>, at site occupies large regions in northern Mexico.
- Cactus, shrub and tree species include:
 - Mesquite (*Prosopis juliflora*)
 - Tree Ocotillo (Fouquieria macdougalii)
 - Palo Verde (Cercidium sonorae)
 - Whiteball Acacia (Acacia angustissima)

Field Campaigns

<u>Land Surface Changes Observed From MODIS at</u> <u>Tower Site (250-m or 1-km pixels)</u>

- NDVI and LAI exhibit strong signature of monsoonal vegetation greening.
- Albedo and LST decrease during monsoon in response to rainfall and greening.
- Interannual variations observed in the three monsoon responses.

Field Campaigns

Thirty Soil Sampling Plots in 250-m Pixel

<u>Isotopic Sampling at Eddy</u> <u>Covariance Site</u>

Ground Sampling at Eddy Covariance Tower Site

- Thirty (30) sampling plots in 250-m by 250-m area around tower selected and characterized including:
 - Slope, Aspect, Elevation
 - Vegetation and Soils
 - Landscape Position
- Daily sampling at five (5) locations in each sampling plot:
 - Volumetric soil moisture at 0-6 cm using portable Theta Probe.
 - Soil temperature using thermometer and IRT probe at 1, 5, 10 cm depths.
- Three to five half-hourly samplings of vapor, soil and vegetation for isotopic composition and ET partitioning:
 - Water vapor extracted from four (4) eddy covariance tower heights.
 - Soil sampled from 5, 10, 15 cm depths at five locations around tower.
 - Vegetation (stem, leaf) sampled from three major species around tower.

Surface Fluxes

- Marked NDVI greenup tied directly to precipitation temporal distribution.
- Good agreement between MODIS and Tower *albedo*, with decrease during monsoon.
- Evaporative Fraction (EF) sensitive to greenup and precipitation pulses.

Surface Fluxes

- Diurnal fluxes follow typical patterns for <u>desert conditions with variable moisture</u>.
- Increasing λE and decreasing H after precipitation pulses (vice-versa during drying).
- R_{n} , λE and H highly sensitive to cloudier conditions during 2007 period.

Tower Conditions

<u>Comparison of Soil Moisture</u> Estimates at Tower

Field Campaign Day in July 2006

Field Campaign Day in July-Aug 2007

Soil Moisture Conditions at Eddy Covariance Tower Site

- Good agreement between continuous soil moisture estimates (Vitel sensor) and daily sampling (Theta probe).
 - 0-6 cm Theta probe
 - 5, 10 and 15 cm Vitel Hydra sensors
- Soil moisture variations with depth at the EC tower site suggest:
 - More dynamic surface layer (0 to 6 cm) captured by the Theta probe.
 - Less dynamic soil moisture for soil layers at depths of 15 cm and greater.

Loamy Sand, Many Roots

Sandy Loam, Minimal Roots

Hard, Clay-Rich Layer

Footprint Conditions

Footprint-Averaged Conditions at Eddy Covariance Tower Site

- Soil temperature and moisture in footprint follows rainfall forcing:
 - Greater spatial variation during 2006 due to stronger radiation forcing.
 - Large response to consecutive storms in 2007 lead to runoff production.
- Soil moisture and temperature exhibit spatial variations within footprint.
 - High soil moisture near channel and along steep, north-facing boundary.
 - Low soil moisture immediately around tower and along road.

Temporal Mean Soil Moisture Field

Footprint Conditions

<u>Comparison of Tower Plot</u> <u>and Footprint-Averages</u>

Land Surface Conditions in EC Tower Footprint and Tower Plot

- Footprint and tower plot surface states compared over range of conditions:
 - Footprint-average soil moisture is well represented at the tower site, but slightly higher values observed in 2006 at tower.
 - Footprint-average soil temperature deviates from tower site, exhibiting lower temperatures for both 2006 and 2007.
- Indicates that <u>footprint 'averages' over</u> sites exhibiting varying surface states.

Soil Moisture Anomalies in Footprint

Evapotranspiration Controls

Relations Between Bowen Ratio and Soil Moisture Conditions

Soil Moisture Control on Radiation Partitioning at EC Tower

- Strong impact of soil moisture on the measured Bowen Ratio ($B = H/\lambda E$).
 - Decrease in *B* with increasing soil moisture, implying more evapotranspiration.
- Footprint-average conditions capture the relation better than tower plot observations
 - Implies that <u>soil moisture in the footprint is</u> <u>more directly related</u> to the turbulent fluxes.
 - Power-law relation suggested between B and footprint-averaged θ : $B = 4.95 \theta^{-0.95}$ ($R^2 = 0.6$)

Bowen Ratio Statistics at EC Tower

	2004	2006	2007
	JD 199-276	JD 189-228	JD 186-240
B _{mean}	3.21	0.82	1.84
B _{std}	3.30	0.97	2.42
B _{max}	18.16	3.58	12.95
B _{min}	0.03	0.10	0.08

Evapotranspiration Controls

<u>Phenological Controls on</u> ET-Soil Moisture Relation

ET-Soil Moisture Relation varies over different Monsoon Seasons

- ET-soil moisture relation computed for 2004, 2006 and 2007 based upon:
 - Tower soil moisture sensor (surface, 5-cm depth) and EC measurements over periods:
 - 2004: JD 205 275 (July 23 Sept 31)
 - 2006: JD 189 228 (July 8 Aug 16)
 - 2007: JD 186 240 (July 6 Aug 28)
- <u>Functional form of the ET-soil moisture</u> relation varies in this ecosystem.
 - Years with high greeness (2006) show more ET for a soil moisture value. Higher ET_{max} .
 - Years with low greeness (2004) show less ET for a soil moisture amount. Lower ET_{max} .
- ET-soil moisture relations that vary with plant phenology would be useful for:
 - Understanding plant-water interactions
 - Land surface model parameterizations
 - Using vegetation indices as a ET predictor

Conclusions and Remarks

Hydrology and Surface Fluxes in NAMS Ecosystem:

- 1. NAMS leads to large changes in surface characteristics as observed at EC tower and from remote sensing data.
 - Vegetation greening impacts the albedo and partitioning of surface turbulent fluxes over a range of monsoon seasons.
- 2. Land surface conditions in eddy covariance tower footprint vary from those measured directly at the tower site.
 - Footprint sampling allows estimation of the spatiotemporal variations in soil moisture and temperature impacting fluxes.
- 3. Partitioning of surface fluxes is dependent on the footprint average soil moisture and varies with vegetation phenology.
 - Interannual variations in vegetation phenology and soil moisture conditions greatly impact ET and Bowen Ratio.

A Seasonally-Green Desert Landscape

