

Seasonal and interannual relations between precipitation, soil moisture and vegetation in the North American monsoon region

Luis A. Mendez-Barroso¹, <u>Enrique R. Vivoni¹</u>, Christopher J. Watts² and Julio C. Rodriguez²

(1) New Mexico Institute of Mining and Technology, Socorro, NM.(2) Universidad de Sonora, Hermosillo, Sonora, Mexico.

Regional Climate Forum, CICESE

April 11, 2008

Motivation

Precipitation during the NAMS leads to a strong vegetation response consisting of leaf-on of subtropical deciduous species over the complex topography in western Mexico.

Motivation

Seasonality in precipitation and vegetation has potential impacts on land-atmosphere interactions, runoff production and groundwater recharge.

Winter Conditions

Summer Monsoon Conditions

Photographs from 15-m Eddy Covariance Tower in Deciduous Subtropical Forest in Tesopaco, Sonora, Mexico

Motivation

Motivating Questions:

- 1. Are dynamic vegetation patterns related to soil moisture and precipitation distributions?
- 2. Do inter-annual and intra-annual variations exist at the regional scale as well as in different ecosystems?

Methods to Approach Questions:

- 1. Remotely-sensed observations from MODIS.
- 2. Regional network of precipitation and soil moisture observations.
- 3. Spatial and temporal data analyses.

Study Region

Rio Sonora Study Basins

- A large-scale intensive study site has been established in the mountainous Rio Sonora basin (~15,500 km²)
- Region characterized by north-tosouth mountain ranges and two major rivers: Rio San Miguel, Rio Sonora.
- Complex topography with semiarid monsoon climate, seasonally-green vegetation and ephemeral streams.

SMEX 2004: NAME 2004:

Soil Moisture Field Campaign Eddy Covariance Tower Network **Sonora IRES:** Expanded Hydromet Network (2006-2008) Eddy Covariance Experiments

Regional Network

Ecosystem Distribution and Continuous Stations

Sonoran grassland

Sinaloan thornscrub

Increasing Elevation

Madrean woodland

Stevens Hydra Probe SDI-12

Texas Electronics 8" Tipping-bucket Rain Gauge

Regional Hydrometeorological Network

- Network of 25 continuous measurement stations of precipitation and soil moisture (and 10 new stations to be installed in 2008).
- Represent different elevations, ecosystems types and soil/geological formations.
- Each continuous station has a tipping-bucket rain gauge (calibration performed) and two soil moisture sensors: 2.5 and 5-cm depths.

Remote Sensing

Extraction of Vegetation Dynamics at Regional Stations

Polygon extraction area (3 x 3 pixels, 750m by 750-m) centered on each station.

Remotely-Sensed Vegetation Dynamics From MODIS

• MODIS AQUA Imagery Archive:

• NDVI, EVI, Land surface temperature (LST), Leaf area index (LAI) and Albedo.

- 8-day and 16-day image composites from period 2004-2007 (~180 images).
- Spatial resolution of 250-m or 1-km, depending on product.
- Image Processing Procedures:
 - Reprojection and format conversion from native HDF-EOS to GEO Tiff.
 - Extraction of polygon around each regional station for each image.
 - Calculation of 3x3 pixel average value and standard deviation.
 - Time series analysis of zonal statistics.
- Normalized Difference Vegetation Index (NDVI):

$$NDVI = \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red}}$$

• 250-m resolution product, available at 16day composites.

Ecosystem-Scale Dynamics

content in soil (%)

Water (

<u>Temporal Dynamics of NDVI,</u> <u>Precipitation and Soil Moisture</u>

Hydrologic Controls on Vegetation Dynamics

- In each ecosystem, we related MODIS and station observations:
- Three monsoons (2004-2007) had differences in vegetation dynamics linked to hydrologic conditions.
- Conifer ecosystems:
 - Smaller overall response to monsoon rainfall and sensitivity to winter precipitation.
 - Larger interannual differences in monsoon response.
- Subtropical ecosystems:
 - Consistent and significant greening during summer season.
 - Smaller interannual differences in monsoon response.
- Drought and pluvial periods apparent in short-term records.

Regional-Scale Dynamics

Seasonal Changes in NDVI during NAMS over Region

- Marked *NDVI* greenup for each summer monsoon, related to total season precipitation averaged over entire network, *<R>*.
- Interannual differences in photosynthetic activity within various ecosystems.
- Interannual variability in the <u>spatial organization of vegetation greenup</u>, which can serve as a proxy for total season precipitation distribution in ungauged regions.

Vegetation Metrics

Quantifying Seasonal Vegetation Dynamics at Regional Stations

- <u>Ecosystem phenological metrics</u> derived for each ecosystem using the methods of Reed et al. (1994):
 - Integrated NDVI (iNDVI) related to the net primary productivity (NPP).
 - Duration of Greenness related to the period of photosynthetic activity.
 - NDVI range is a measure of the change in the ecosystem biomass (photosynthesis).
- Based upon these vegetation metrics, we found the following:
 - <u>Total annual precipitation is a strong</u> <u>control on the iNDVI (related to greeness</u> <u>and NPP) for each ecosystem.</u>

• <u>Higher rainfall use efficiencies (REU) are</u> found for the more arid ecosystems.

• Other metrics include Rate of Greenup and Rate of Senescence.

Spatial and Temporal Stability

<u>Vegetation Dynamics used to Infer Ecosystem</u> <u>Dynamics in Time and Space using Stability Analysis</u>

- <u>Analysis clearly delineates the stable and dynamic ecosystems</u> in the region based on the temporal and spatial variability of NDVI (over all images in 2004-2007).
- Higher elevation conifers and riparian corridors relatively little in time and do not track the spatial dynamics in the region.
- Mid elevation subtropical deciduous species vary more in time and represent the regional scale mean behavior (since they capture more of the regional area).

Topographic Controls

Topographic Controls on Ecosystem Dynamics

- Elevation dependence of ecosystem distribution and vegetation dynamics
 - Higher NDVI in high elevation, but complex relation for upper sites.
 - Higher sites track the spatial mean less than low sites and exhibit less variations in time than low sites.

• <u>An optimal region may exist where</u> <u>vegetation represents the spatial mean</u> <u>and has low temporal variability.</u>

Transect Location

Vegetation-Hydrology Relations

Lagged Correlation Coefficients for Precipitation

Station ID	0	0+1	1+2	0+1+2
130	0.442	0.784	0.749	0.843
131	0.465	0.727	0.872	0.874
132	0.494	0.721	0.741	0.805
133	0.477	0.807	0.876	0.885
135	0.559	0.831	0.745	0.847
136	0.580	0.900	0.790	0.859
143	0.495	0.819	0.822	0.903
144	0.314	0.735	0.805	0.789
146	0.429	0.608	0.844	0.736
147	0.691	0.927	0.802	0.928

Relations between Vegetation Dynamics and Hydrologic Variables

- Lagged correlations of monthly NDVI to monthly precipitation and soil moisture indicate the following:
 - Correlation between NDVI and hydrologic variables increases with accumulation time.
 - Concurrent correlation (lag=0) is greater with soil moisture than precipitation.
 - Prior correlations (lag=0+1+2) is greater with precipitation than soil moisture.
 - Represent regional mean (all stations as symbols) and standard deviations (bars).
- Significant correlations (bold values) at individual stations observed for:
 - <u>Precipitation accumulation during</u> monsoon (lag = 0+1+2).
 - <u>Soil moisture accumulation during current</u> month or previous month.

Conclusions and Remarks

1. NAMS leads to spatial and temporal changes in vegetation as observed from MODIS remote sensing data.

Vegetation greening varies within different ecosystems and demonstrates seasonal and interannual variations in response.

2. Vegetation dynamics observed from remote sensing allow characterization of ecosystem properties.

Spatiotemporal stability analyses allow delineation of regions of similar ecosystem response along complex topography.

3. Hydrological conditions have a strong control on the vegetation dynamics in the NAMS region.

Rainfall Use Efficiency (RUE) and monthly NDVI are correlated with soil moisture and precipitation accumulations.

A Seasonally-Green Desert Landscape

