

High-resolution, multi-scale modeling of watershed hydrology

An Opportunity to Integrate Remote Sensing Observations, Field Data Collection and Distributed Modeling in a Hydrologic Observatory

Enrique R. Vivoni

Assistant Professor of Hydrology Department of Earth and Environmental Science New Mexico Institute of Mining and Technology

CUAHSI Cyber Seminar October 3, 2003

Real and Virtual Hydrologic Observatories

• Continuous in-situ measurements over spatially distributed locations within nested watersheds.

• Repeat-visit, high-resolution, hyperspectral observations from spaceborne and airborne sensor platforms.

Physically-based Distributed Models

- Process-based representations of basin hydrology, geomorphology and landatmosphere interactions.
- Incorporation of spatial and temporal distribution of topography, rainfall, soils, vegetation, meteorology, soil moisture.

Introduction

Outline

Acknowledgements

- **1. Hydrologic Observatories**
- **2. Multiple-resolution Distributed Hydrologic Modeling**
- **3. Illustrative Modeling Scenario**
- **4. A Semi-Arid Real and Virtual Hydrologic Observatory**
- **5. Concluding Remarks**

MIT Ralph M. Parsons Laboratory Prof. Rafael Bras, MIT Prof. Dara Entekhabi, MIT CHILD Model Development Team: Greg Tucker (Oxford U.) Stephen Lancaster (Oregon State) Nicole Gasparini (Yale) **tRIBS Model Development Team:** Valeri Ivanov and Scott Rybarcyzk (MIT) **New Mexico Tech Hydrology Program:**

Robert Wyckoff and Colin Cikoski

Introduction

Hydrologic Cycle

Earth's Hydrologic and Energetic System:

Water and Heat Storages and Transports over Many Time and Space Scales

Catchment Hydrology

Solar radiation drives the hydrologic cycle over the land-surface:

- (1) Evapotranspiration (ET)
- (2) Cloud Condensation and Precipitation (P)
- (3) Streamflow Runoff (Q)
- (4) Aquifer Recharge (GW)

 $\Delta \mathsf{S}$ = <code>P</code> – <code>ET</code> + <code>Q</code> – <code>GW</code> **Hydrologic Balance**

Energy Balance

R_n – G = λET + H

Hydrologic Observatories

Field and Remote Sensing Data over Hydrologic Catchments

<u>Saytet biter asko quincarta ft</u> **Data EM Data**

Hydrologic Observatories 5

Hydrologic Observatories

Remote Sensing Data

• Basin-scale remote data retrievals leading to high spatial-temporal resolution hydrologic observations.

Houser et al. (2001) PB Microwave Radiometer Derived Soil Moisture

In-situ Measurements

10.5 ha

Western and Grayson (2001) Measured Volumetric Soil Moisture

Field Data Collection

• Catchment-scale measurements leading to understanding time-changing spatial pattern of hydrologic processes.

Hydrologic Observatories

Hydrologic Observatories

Major advances in remote sensing have improved our capabilities to simulate and forecast watershed hydrology. Numerical models capable of utilizing these data sources at multiple scales are required.

Measurements of Earth's Hydrologic Variables

Distributed Hydrologic Modeling

Numerical simulations of catchment hydrologic processes require a method for representing a basin. Methods can be categorized as **lumped versus distributed modeling** (contours, grids, polygons, TINs).

(e.g. WMS)

Distributed Hydrologic Modeling

TIN-based Real-time Integrated Basin Simulator (tRIBS) is a fullydistributed model of coupled hydrologic processes.

processes over complex terrain.

Distributed Hydrologic Modeling

- Coupled vadose and saturated zones with dynamic water table.
- Moisture infiltration waves.
- Soil moisture redistribution.
- Topography-driven lateral fluxes in vadose and groundwater.
- Radiation and energy balance.
- Interception and evaporation.
-

Distributed Hydrologic Modeling

Multiple Resolution Terrain Models

TINs are a piece-wise surface interpolations of *x, y, z* points consisting of triangular elements of varying size resulting in multiple resolution models.

Multiple Resolution Terrain Models

TINs allow adaptive, multi-resolution representations that capture topographic or hydrologic variability over many scales and nestings.

Traditional TIN ModelsTopographic Slope Criteria

- Multiple resolution using slope variability
- Low-resolution in flat floodplains
- High-resolution in rugged hillslopes

Similarity TIN Models Hydrologic Index Criteria

- Multiple resolution using hydrologic variability
- High-resolution in saturated floodplains
- Low-resolution in dry hillslopes

Multiple Resolution Terrain Models

Both intramodel and intermodel resolution variability allows for flexible design of model domain. Nesting of variable resolution domains.

Multiscale Domain Nesting

- Nesting of high-resolution interior basins.
- Nesting of floodplain regions.
- Multiple nested basins at different resolution.

Beven (2001) Rainfall-Runoff Modeling

Atmosphere-Land-Aquifer Interactions

Coupled Energy and Hydrology Processes on Complex Terrain

• **Radiation:** Incoming short-wave and long-wave, outgoing long-wave radiation including effects of terrain.

- **Vegetation:** Canopy interception, drainage, throughfall and evaporation using vegetation functional type.
- **Energy Balance:** Net radiation, ground heat, sensible heat and latent heat fluxes.
- **Evapotranspiration:** Soil-moisture controlled bare soil evaporation and canopy transpiration in root zone.

Hydrologic routing on hillslopes is tied to channel node discharge where a 1-D FEM hydraulic channel routing scheme is implemented.

Stream and River Processes

- Stream channel definition within TIN model based on available hydrography
- One-dimensional TIN-based hillslope routing to nearest stream node.
- Hydrologic river routing of various runoff mechanism.
- Hydraulic routing in main channel.
- River discharge and water depth at **Hillslope node**
Multiple interior gauging stations.

Illustrative Example: Model Geometry

Multiple-resolution voronoi polygon network, stream reaches, channel flow observations and transect.

Computational Domain

- 1370 nodes and voronoi polygons ranging in size from 30 to 12700 m2.
- Multiple interior gauging stations along the stream reaches.
- Hydrologic observations also made across a hillslope transect.
- High-resolution valley bottom.

Simulation Characteristics

- Period 11/1998 7/2000.
- Radar rainfall and meteorological forcing.

Illustrative Example: Soils, Plants, Water

Model parameterizations and initialization conditions based on available land-surface descriptors and streamflow observations.

Parameterizations

- Soil hydraulic and thermal properties.
- Canopy biophysical, geometric and optical properties.

Initialization

- Initial groundwater based on TOPMODEL method and observed baseflow.
- Water table position fixes initial soil moisture profile.

Illustrative Example: Hydrometeorology Data

One-way coupling to atmospheric forcing drives the soil surface and canopy water and energy balance components.

Hydrometeorological Forcing

• Radar rainfall data from **NEXRAD** (4km and 1-hr resolution)

•Weather station data providing hourly values at a point:

- Air temperature
- Dew point
- Wind speed
- Sky cover
- Atmospheric Pressure

Illustrative Example: Multiple-gauge Flow

Hydraulic channel routing permits discharge and depth predictions in all interior basins draining to network.

Illustrative Example: Hillslope Transect

Variation in hydrologic response is evident across the hillslope transect. Blue $=$ hillslope bottom; Red $=$ hillslope summit.

Hillslope response

- Greater runoff production in convergent hillslope bottom.
- Soil moisture remains in fully saturated condition for bottom.

•Water table at the surface for hillslope bottom.

• Greater moisture leads to higher evapotranspiration in riparian valley.

Illustrative Example: Spatial Patterns

Distributed Model Applications

Multi-year simulations in operational-scale NWS basins with multiple gauging stations carried out using tRIBS over 1993-2000.

Multi-year Flood Simulation

• Comparisons to lumped and semidistributed models through NWS Distributed Model Intercomparison Project (DMIP, 2001-2002)

- Demonstrated clear feasibility of fully-distributed TIN approach for large regional watersheds.
- Improved performance for cases with no model calibration permitted as compared to lumped model.

A Semi-Arid Real and Virtual Observatory

Rio Puerco River Basin

- Relatively unregulated flow in large regional watershed (16,000 km2).
- Hydrologic and geomorphic research relating to arroyos and gullies and hyperconcentrated flow.
- Important subbasin for Rio Grande with confluence in Sevilleta LTER.
- Complex topography and geology.
- Summer monsoon thunderstorms leading to flood events.
- Sensitive to climate, land-use change.
- EPA Watershed Initiative Basin.
- USGS Global Change Research Basin.

A Semi-Arid Hydrologic Observatory 25

A Semi-Arid Real and Virtual Observatory

Field and Remote Sensing Data in Real Observatory

Distributed Modeling in Virtual Hydrologic Observatory

A Semi-Arid Hydrologic Observatory

Concluding Remarks

Real and Virtual Hydrologic Observatories

- Advance hydrologic science through combined field data collection, remote sensing and modeling.
- Interface with other disciplines (geomorphology, ecology, geophysics, atmospheric sciences).

Multiple resolution Distributed Modeling

- Provide flexible model representation for largescale watersheds.
- Allow resolution to vary with topography or hydrology and within nested basin scales.
- Provides basis for high-performance computing initiatives in hydrology.

For more information, visit http://www.ees.nmt.edu/vivoni

Questions?

Question and Answer Session 28