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Introduction
The North American monsoon (NAM) is the primary 
climatological phenomenon in the southwestern United 
States and northwestern Mexico, leading to large changes 
in precipitation, atmospheric conditions, vegetation and 
overall land surface properties (e.g., Douglas et al., 1993). 
Previous studies carried out by the North American Monsoon 
Experiment (NAME) have focused on the relationship and 
potential feedbacks between the NAM and the conditions of 
the land surface, including changes in vegetation, soil moisture 
and streamflow (Zhu et al., 2005; Gochis et al., 2006; Watts et al., 
2007; Vivoni et al., 2007). Evidence from these studies suggests 
dramatic transitions in the hydrological conditions of the region. 
For example, in the seasonal march of the runoff ratio (Gochis 
et al., 2006) and in sharp changes in the surface fluxes (Watts 
et al., 2007). Here, we present multiple-year evidence for the 
relation between surface flux measurements and hydrologic 
conditions in a subtropical scrubland, one of the major regional 
ecosystems, which experiences significant greening during the 
NAM (Salinas-Zavala et al., 2002; Watts et al., 2007). The analysis 
is based on measurements at and around an Eddy Covariance 
(EC) tower located in Rayón, Sonora, Mexico within the Río 
San Miguel river (~3500 km2) basin. 
Surface Flux Measurements
Recent land-atmosphere interaction studies in the NAM region 
have focused on understanding the impact of vegetation 
greening on the measurement of soil moisture and energy 
balance components, including evapotranspiration. While these 
efforts began during the NAME 2004 campaign, subsequent 
studies have been sponsored by NSF, CONACYT and NOAA. 
Our focus is on the relation of surface fluxes, soil moisture and 
land surface conditions at the Rayón EC site (denoted as STS in 
Watts et al., 2007). The site is located at ~630 m in the Río San 
Miguel, a large ephemeral river basin, flowing north to south 
in the northern Sierra Madre Occidental. Vegetation at the site 
is classified as subtropical scrubland and is a mixture of trees, 
shrubs and desert cactus that respond to the precipitation pulses 

Relation between surface flux measurements and hydrologic conditions in a subtropical scrubland 
during the North American Monsoon

Vivoni, E.R1., C.J. Watts2, J.C. Rodríguez2, J. Garatuza-Payan3, L.A. Méndez-Barroso1, E.A. Yepez4, J. Saiz-Hernández2,and D.J. Gochis5

1Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology,  2Departamento de Física, Universidad de 
Sonora, México.  3Departamento de Ciencias del Agua y del Medioambiente, Instituto Tecnológico de Sonora, México.  4Department of Biology, 
University of New Mexico, 5. National Center for Atmospheric Research, USA.
Corresponding author: vivoni@nmt.edu.

during the NAM. Soil profiles in the region are shallow (~70 
cm in depth above an impermeable clay lens) and primarily 
composed of loamy sand and sandy loam with intermixed 
clasts. 
Figure 1a (page 22) illustrates the experimental design for 
surface fluxes and footprint measurements of soil moisture 
and temperature. The footprint of the EC tower is defined 
here as a 250-m by 250-m region around the site, selected 
based on the pixel dimensions of the MODIS sensor. Within 
the EC tower footprint (see below), 30 sampling plots were 
established to relate these land surface conditions to the 
surface flux measurements. The 9-m tower contains a 3D sonic 
anemometer, as well as high frequency measurements of air 
temperature and relative humidity to estimate the covariance 
terms necessary to obtain the latent and sensible heat fluxes 
(Watts et al., 2007). Hydrometeorological observations at the 
site also include precipitation, soil moisture and temperature 
(at three depths), and radiation components used to estimate 
albedo and net radiation. Operation of the Rayón EC site has 
concentrated on summer campaign periods in 2004, 2006 and 
2007, in particular to capture the changing conditions during 
the NAM onset, peak and demise (e.g. vegetation greening, 
see Figure 1b, c). 
In Figure 2 (page 16), we present a comparison of remotely-
sensed and field observations of rainfall, surface fluxes and 
land surface conditions during three monsoon periods (2004, 
2006, 2007) at the EC tower site. Several interesting transitions 
are observed in vegetation cover, surface albedo and surface 
fluxes during the NAM, as well as important differences among 
the monsoon seasons. Vegetation dynamics are captured by 
the Normalized Difference Vegetation Index (NDVI) estimated 
at the tower pixel (250-m by 250-m) from 16-day MODIS 
composites. Vegetation dynamics are clearly tied to the daily 
precipitation, with early or late monsoon greening tightly 
related to the onset of precipitation. Similarly, the decrease 
in NDVI during the monsoon demise is tied to the available 
precipitation in the late summer. It is interesting to compare, 
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for example, monsoon 2006 (Figure 2b) with a high peak NDVI 
and early onset, with monsoon 2007 (Figure 2c), which showed 
a reduced NDVI peak, a later onset but longer duration. 
Vegetation greening is closely tied to the changes in albedo 
observed at the site from two sources: MODIS 16-day broadband 
albedo composites (1-km resolution) and EC tower albedo 
estimates. Comparison between the two albedo estimates is 
remarkably good, given the differences is spatial resolution (1 
km2 versus ~4 m2 field of view), suggesting a spatially coherent 
change in vegetation cover in the vicinity of the tower. The 
clearest transition in albedo is observed for monsoon 2007 
(Figure 2c) which spans the largest time period. Note that the 
vegetation greening indicated by increasing NDVI is coincident 
with the decrease in albedo. As expected, the land surface 
greening decreases the surface albedo, although the change is 
not very large (from ~0.18 to ~0.15), possibly due to the low 
leaf area and the extensive bare ground in this ecosystem. 
Given the high amounts of incoming solar radiation at the 
site, however, even small changes in albedo can significantly 
affect the radiation balance. Note that as vegetation cover is 
reduced in the late monsoon 2004 (Figure 2a), the albedo of the 
land surface begins to increase once again to reflect the drier, 
desert conditions.
Along with changes in albedo, vegetation greening leads to 
significant variations in the partitioning of surface turbulent 
fluxes, as captured by the evaporative fraction, EF = λE  / (λE + 
H), where H and λE are the daily-averaged sensible and latent 
heat fluxes. This is most clearly observed in monsoon 2007 
(Figure 2c) where the measurements span the monsoon onset 
and vegetation response. Note the low values of EF (near zero), 
implying higher sensible heat fluxes, prior to the NDVI increase, 
and the dramatic increase in EF (~0.7 to 0.9) as available soil 
moisture from precipitation pulses is transferred back to the 
atmosphere via evapotranspiration. During each summer, 
individual storm events lead to increases in EF (e.g., higher 
latent heat flux) that are sustained over periods of several 
days. Interestingly, for periods with consecutive storms (low 
interstorm duration), sustained EF at high values may last for 
several weeks, for example in monsoon 2006 (Figure 2c). During 
the monsoon demise, vegetation becomes senescent and the 

EF decreases toward low values (see latter part of monsoon 
2004, Figure 2a), implying a return to high sensible heat fluxes 
at the land surface. 
Footprint-Averaged Hydrologic Conditions
In an effort to understand land-atmosphere interactions, we 
conducted a set of intensive surface measurements in the 
tower footprint (Figure 1a). For simplicity, we defined the 
footprint as 250-m by 250-m box around the tower, while 
recognizing that the actual measurement footprint will vary 
with wind conditions. For our purposes, this definition allows 
comparison of the estimated surface conditions to remotely-
sensed observations from MODIS. As shown in Figure 1a, the 
topographic conditions around the tower are fairly uniform, 
as determined from a satellite-derived digital elevation model. 
Nevertheless, terrain variability at the site does include 
two stream channels, which have more abundant riparian 
vegetation as compared to exposed hillslopes at the site. As a 
result, we expected to capture spatiotemporal variations in soil 
temperature and moisture through daily sampling at the thirty 
(30) sampling plots in the tower footprint. Each sampling plot 
(~1m by 1m) was sampled at similar times each day during two 
week intervals in July and August 2006 and 2007. Measurements 
were performed using portable sensors, as described more fully 
in Vivoni et al. (2007). 
Figure 3 (page 17)  presents a comparison between the footprint-
averaged, daily soil moisture (blue circles) and temperature (red 
triangles) conditions and the estimated daily Bowen Ratio (B 
= H/λE, black circles). Surface fluxes and footprint hydrologic 
conditions are presented for monsoon 2006 (July 5 to 20, Figure 
3a) and monsoon 2007 (July 19 to August 4, Figure 3b). The soil 
moisture and temperature symbols represent the average of the 
30 plots, while the bars capture the spatial variability as ±1 std. 
The daily precipitation (bars) is included for reference. Note 
the good correspondence between the soil moisture and soil 
temperature and their relation to storm and interstorm periods. 
As expected, precipitation pulses promote a decrease in soil 
temperature and an increase in soil moisture, with consecutive 
storms leading to sustained wet and cool surface conditions. 
Interestingly, the spatial variability in the footprint is different 
in the two years, with monsoon 2007 exhibiting smaller spatial 

Figure 1. EC tower location and footprint sampling plots in Rayón, Sonora (30.04°N, 110.67°W). (a) Thirty sampling plots (white circles) 
in a 250-m box surrounding tower site (black square) overlain on a 30-m DEM (Digital Elevation Model) derived from ASTER (Advanced 
Spaceborne Thermal Emission and Reflection Radiometer). Roads and channels were traced using a GPS. (b) and (c) are photographs of the EC 
tower taken during a June period prior to the monsoon onset and a July period after monsoon greening, respectively. 



23

CLIVAR ExchangesVolume No. 3 September 2004Volume 9 No.3 September 2004 CLIVAR ExchangesCLIVAR ExchangesVolume 13  No.2  April 2008

variations in soil moisture and temperature, due to the effects of 
sustained cloud cover on limiting incoming solar radiation. 
Of particular relevance is the relation between land surface 
conditions and the Bowen Ratio measured during monsoons 
2006 and 2007. Note the excellent correspondence between 
footprint-averaged soil moisture and B, where periods of 
high B (large H) occur during interstorm periods, with rapid 
decreases in B (high λE ) after precipitation pulses wet the 
land surface. Further analysis of the relation between B and 
footprint-averaged soil moisture (not shown) indicates that a 
power law behavior is observed for both monsoon seasons: B = 
4.95 <θ>-0.95 (R2 = 0.6), where <θ> is the footprint-averaged, daily 
soil moisture (%). This relation is significantly weakened when 
using the soil moisture conditions at the sampling plot near the 
tower. This suggests that the surface flux measurements are 
directly linked to the averaged soil moisture conditions in the 
tower footprint. Analysis comparing the tower and footprint-
averaged conditions also revealed that the region around the 
tower is wetter and cooler than the tower plot, on average, for 
the two sampling periods. 
Soil Moisture Controls on Evapotranspiration
The relation between surface fluxes and soil moisture 
conditions is particularly important as it forms an important 
parameterization in many land surface models (e.g. Vivoni et al., 
2005). Typically, actual evapotranspiration (ET) is regulated by 
the amount of soil moisture present in the root zone, following 
a functional form that recognizes soil moisture limitations on 
ET below a threshold value (Rodríguez-Iturbe and Porporato, 
2004). The functional form varies across different land surface 
models, but is generally assumed to be constant in time, with 
appropriate parameters selected for the ecosystem of interest. 
Unfortunately, few studies have attempted to establish the 
appropriate relationships between ET and soil moisture in 
ecosystems experiencing monsoonal greening and pulsed 
precipitation. As a result, most hydrological and climate 
models operating in the NAM region do not adequately 
capture vegetation dynamics in the parameterization of surface 
fluxes. 
Figure 4 (Page 17) provides initial evidence for the temporal 
(and vegetation-dependent) variation of the relation between ET 
and soil moisture in the subtropical scrubland. Daily estimates 
of latent heat flux (λE ), consisting of both evaporation and 
transpiration, are plotted as a function of the daily-averaged 
soil moisture from the tower sensor (at 5-cm depth, θ in vol. 
%) in Figure 4a. We use the tower site data due to the longer 
period of coincident measurements. Note the differences in the 
relation between λE and θ for each monsoon, suggesting the 
functional form may have interannual variations that depend 
on the vegetation state. For example, monsoon 2004 exhibits 
a maximum λE   that asymptotes for high soil moisture values 
(~12 to 15 %) at ~4 MJ/day, while monsoon 2006 shows a 
maximum λE of nearly 12 MJ/day for soil moisture values of 
10 to 12%. 
Inspection of the NDVI time series for each monsoon season 
(Figure 4b), indicates that the sequence of λE (θ) relations 
follows a similar order to that observed in the maximum NDVI. 
Monsoon 2006, which exhibited the higher values of λE  for 
a given θ, also shows the highest vegetation greenness. This 
suggests that the subtropical scrubland at the EC tower site has 
a greater transpiration capacity during years with increased 
biomass resulting from above-average precipitation. As a result, 
the soil moisture control on ET varies temporally according to 
the ecosystem state. 
Discussion and Conclusions
The evidence presented here on the interactions of surface fluxes 

and hydrological conditions in the North American monsoon 
region is based upon integrated, multiple-year studies at an 
eddy covariance tower site in the subtropical scrubland of 
northern Sonora, Mexico. The use of remote sensing data, EC 
tower observations and footprint measurements of surface 
conditions have revealed that: (1) the onset of the NAM leads 
to dramatic changes in surface properties and the partitioning 
of energy fluxes; (2) footprint-averaged soil moisture and 
temperature conditions are closely related to the surface fluxes; 
and (3) considerable variations exist between monsoon seasons, 
leading to vegetation-dependence on the relation between 
soil moisture and ET. On-going and future efforts in the study 
region include a detailed ET partitioning experiment based 
on the isotopic signature of water vapor, vegetation and soil 
samples (summer 2007); installation of a new EC tower site in 
the Río San Miguel (summer 2008); and land surface modeling 
using one-dimensional and distributed approaches to assess 
implications of our findings toward simulations and forecasts 
in the NAM region. 
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From Higgins et al., page 9: Relationships between Gulf of California 
moisture surges and tropical cyclones in the Eastern Pacific Basin

Figure 2. Near-surface differential reflectivity (ZDR) and median drop 
diameter (D0) as functions of reflectivity (ZH) for four terrain bands: 
over water, land 0-500 m, 500-1500 m, and 1500+ m MSL.  Data from 
S-Pol during the NAME deployment (8 July-21 August 2004).

From Rowe et al., page 12: Radar-based studies of convection in 
NAME

From Kursinski et al, Page 14: GPS observations of precipitable water and implications for the predictability of precipitation during the North 
American Monsoon

Figure 1.  WRF simulations of accumulated precipitation for three different initial PWV fields, 95%, 100% and 105% of the ETA analysis PWV 
for July 29, 2004. Black dots indicate the locations of our GPS receivers.  Triangles indicate the Empalme and Chihuahua radiosonde locations.  
Precipitation statistics in Figure 2 were derived in the southeastern region enclosed by the thin blue line.

Figure 2. Seasonal evolution and interannual variability of rainfall, surface fluxes 
and land surface conditions at the EC tower for three monsoons: (a) 2004, (b) 2006, 
and (c) 2007. Rainfall (mm/day) is obtained from a tipping bucket rain gauge (gray 
bars). The MODIS sensor used to derive NDVI (green solid line) and albedo (orange 
solid line). MODIS albedo is compared to daily estimates at the EC tower obtained as 
the ratio of outgoing to incoming shortwave radiation (a = Rsout/Rsin, orange circles). 
Daily estimates of surface turbulent fluxes (sensible heat, H and latent heat, λE) are 
used to compute the evaporative fraction, EF = λE / ( λE + H), black solid line. 

Figure 1.  Composite evolution of accumulated precipitation anomalies 
(mm) for (a) all surges, (b) TC-related surges and (c) surges not related 
to TCs.  Surges are keyed to Yuma, AZ.  Day 0 is the onset date of the 
surges at Yuma.  The accumulation period relative to onset is indicated 
on each panel.  The shading interval is 1 mm day-1and values greater 
than 1 mm day-1 (less than -1 mm day-1) are shaded dark (light).  The 
number of cases in each composite is given in Table 1, page 9.

From Vivoni et al, page 21: Relation between Surface Flux Measurements and Hydrologic Conditions in a subtropical scrubland during the 
North American Monsoon
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From Vivoni et al, page 21: Relation between Surface Flux Measurements and Hydrologic Conditions in a subtropical scrubland during the 
North American Monsoon

Figure 4. (a) Relation between daily latent heat flux 
(λE in MJ/day) and daily-average soil moisture (θv 
in %) obtained from a 5-cm depth sensor for 2004 
(JD 205 to 275), 2006 (JD 189 to 228), and 2007 (JD 
186 to 240). (b) Temporal evolution of NDVI from 
MODIS for 2004, 2006 and 2007, including spatial 
average of nine surrounding pixels (symbols) and ±1 
standard deviation (bars). 

Figure 3. Footprint-averaged daily volumetric soil moisture (%, blue circles), surface soil 
temperature (°C, red triangles) and Bowen ratio (B = H / λE, black circles) estimated from the 
EC tower for (a) 2006 and (b) 2007. Footprint-averaging considers all 30 plots in 250-m by 
250-m pixel around tower (symbol is spatial average and bars represent ±1 standard deviation). 
Daily rainfall (mm/day) from the tower site (bars) shown as reference. 

From Munoz-Arriola et al., page 24:  Extended West-wide Seasonal Hydrological System: Seasonal Hydrological Prediction in the NAMS 
region

Figure 1. Soil Moisture Percentiles with respect to the 1960-1999 
climatology for a) January 1st 2008 and b) January 15th 2008.

Figure 2. Forecasts effective 1/1/08 (a) and 
1/15/08 (b) as streamflow percentiles for the 
western United States and Mexico for the 
period April-September (circles) and April-July 
(squares), 2008. Dots indicated percentiles 
relative to the 1960-1999 climatology. Circled 
points show locations of stations in the NAMS 
core region: I) Imuris,  II) Casas Grandes, III) 
Conchos,and IV) Ixpalino.


