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Abstract

This paper summarizes results from the Distributed Model Intercomparison Project (DMIP) study. DMIP simulations from

twelve different models are compared with both observed streamflow and lumped model simulations. The lumped model

simulations were produced using the same techniques used at National Weather Service River Forecast Centers (NWS-RFCs) for

historical calibrations and serve as a useful benchmark for comparison. The differences between uncalibrated and calibrated

model performance are also assessed. Overall statistics are used to compare simulated and observed flows during all time steps,

flood event statistics are calculated for selected storm events, and improvement statistics are used to measure the gains from

distributed models relative to the lumped models and calibrated models relative to uncalibrated models. Although calibration

strategies for distributed models are not as well defined as strategies for lumped models, the DMIP results show that some

calibration efforts applied to distributed models significantly improve simulation results. Although for the majority of basin-

distributed model combinations, the lumped model showed better overall performance than distributed models, some distributed

models showed comparable results to lumped models in many basins and clear improvements in one or more basins. Noteworthy

improvements in predicting flood peaks were demonstrated in a basin distinguishable from other basins studied in its shape,

orientation, and soil characteristics. Greater uncertainties inherent to modeling small basins in general and distinguishable inter-

model performance on the smallest basin (65 km2) in the study point to the need for more studies with nested basins of various

sizes. This will improve our understanding of the applicability and reliability of distributed models at various scales.
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1. Introduction

By ingesting radar-based precipitation products

and other new sources of spatial data describing

the land surface, there is potential to improve the

quality and resolution of National Weather Service

(NWS) river and stream forecasts through the use of

distributed models. The Distributed Model Intercom-

parison Project (DMIP) was initiated to evaluate the

capabilities of existing distributed hydrologic models

forced with operational quality radar-based precipi-

tation forcing. This paper summarizes DMIP results.

The results provide insights into the simulation

capabilities of 12 distributed models and suggest
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areas for further research. Smith et al. (2004b) provide

a more detailed explanation of the motivations for the

DMIP project and a description of the basins modeled.

As discussed by Smith et al. (2004b), although the

potential benefits of using distributed models are

many, the actual benefits of distributed modeling in an

operational forecasting environment, using opera-

tional quality data are largely unknown. This study

analyzes model simulation results driven by observed,

operational quality, precipitation data.

The NWS hydrologic forecasting requirements

span a large range of spatial and temporal scales.

NWS River Forecast Centers (RFCs) routinely

forecast flows and stages for over 4000 points on

river systems in the United States using the NWS

River Forecast System (NWSRFS). The sizes of

basins typically modeled at RFCs range anywhere

from 300 to 5000 km2. For flash-floods on smaller

streams and urban areas, basin-specific flow or stage

forecasts are only produced at a limited number of

locations; however, Weather Forecast Offices (WFOs)

evaluate the observed and forecast precipitation data

and Flash Flood Guidance (FFG) (Sweeney, 1992)

provided by RFCs to produce flash-flood watches and

warnings. Lumped models are currently used at RFCs

for both river forecasting and to generate FFG.

Given the prominence of lumped models in current

operational systems, a key question addressed by

DMIP is whether or not a distributed model can

provide comparable or improved simulations relative

to lumped models at RFC basin scales. In addition, the

potential benefits of using a distributed model to

produce hydrologic simulations at interior points are

examined, although with limited interior point data in

this initial study. Statistics comparing distributed

model simulations to observed flows and statistics

comparing the performance of distributed model and

lumped model simulations are presented in this paper.

Previous studies on some of the DMIP basins have

shown that depending on basin characteristics, the

application of a distributed or semi-distributed model

may or may not improve outlet simulations over

lumped simulations (Zhang et al., 2004; Koren et al.,

2004; Boyle et al., 2001; Carpenter et al., 2001; Vieux

and Moreda, 2003; Smith et al., 1999).

There is no generally accepted definition for

distributed hydrologic modeling in the literature. For

purposes of this study, we define a distributed model

as any model that explicitly accounts for spatial

variability inside a basin and has the ability to produce

simulations at interior points without explicit cali-

bration at these points. The scales of parent basins of

interest in this study are those modeled by RFCs. This

relatively broad definition allows us compare models

of widely varying complexities in DMIP. Those with a

stricter definition of distributed modeling might argue

that some rainfall–runoff models evaluated in this

study are not true distributed models because they

simply apply conceptual lumped modeling techniques

to smaller modeling units. It is true that several DMIP

models use algorithms similar to those of traditional

lumped models for runoff generation, but in many

cases, methods have been devised to estimate the

spatial variability of model parameters within a basin.

Several DMIP modelers have also worked on methods

to estimate spatially variable routing parameters.

Therefore, all models do consider the spatial vari-

ations of properties within the DMIP parent basins in

some way.

The parameter estimation problem is a bigger

challenge for distributed hydrologic modeling than for

lumped hydrologic modeling. Although some par-

ameters in conceptual lumped models can be related

to physical properties of a basin, these parameters are

most commonly estimated through calibration

(Anderson, 2003; Smith et al., 2003; Gupta et al.,

2003). Initial parameters for distributed models are

commonly estimated using spatial datasets describing

soils, vegetation, and landuse; however, these so-

called physically based parameter values are often

adjusted through subsequent calibration to improve

streamflow simulations. These adjustments may

account for many factors, including the inability of

model equations and parameterizations to represent

the true basin physics and heterogeneity, scaling

effects, and the existence of input forcing errors.

Given that parameter adjustments are used to get

better model performance, the distinction between

physically based parameters and conceptual model

parameters becomes somewhat blurred. Although

calibration strategies for distributed models are not

as well defined as those for lumped models, a number

of attempts have been made to use physically based

parameter estimates to aid or constrain calibration

and/or simulate the effects of parameter uncertainty

(Koren et al., 2004; Leavesley et al., 2003;
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Vieux and Moreda, 2003; Carpenter et al., 2001;

Christiaens and Feyen, 2002; Madsen, 2003;

Andersen et al., 2001; Senarath et al., 2000; Refsgaard

and Knudsen, 1996; Khodatalab et al., 2004). In

addition, Andersen et al. (2001) incorporate multiple

sites into their calibration strategy and Madsen (2003)

use multiple criteria (streamflow and groundwater

levels) for calibrating a distributed model, techniques

that are not possible with lumped models. A key to

effectively applying these approaches is that valid

physical reasoning goes into deriving the initial

parameter estimates.

To get a better handle on the parameter estimation

problem for distributed models, participants were

asked to submit both calibrated and uncalibrated

distributed model results. The improvements gained

from calibration are quantified in this paper. Uncali-

brated results were derived using parameters that were

estimated without the benefit of using the available

time-series discharge data. Some of the uncalibrated

parameter estimates used by DMIP participants are

based on direct objective relationships with soils,

vegetation, and topography data while others rely

more on subjective estimates from known calibrated

parameter values for nearby or similar basins. Both

these objective and subjective estimation procedures

are physically based to some degree. Calibrated

simulations submitted by DMIP participants incor-

porate any adjustments that were made to the

uncalibrated parameters in order to produce better

matches with observed hydrographs.

In the DMIP study area, data sets from a few nested

stream gauges in the Illinois River basin (Watts,

Savoy, Kansas, and Christie) are available to evaluate

model performance at interior points. In an attempt to

understand the models’ abilities to blindly simulate

flows at ungauged points, the DMIP modeling

instructions did not allow use of data from interior

points for model calibration. However, it is recog-

nized that an alternative approach that uses interior

point data in calibration may help to improve

simulations at basin outlets (e.g. Andersen et al.,

2001). Only one of these interior basins (Christie) is

significantly smaller (65 km2) than the basins typi-

cally modeled by RFCs using lumped models

(300–5000 km2). As discussed below, the results

for Christie are distinguishable from the results for the

larger basins because of lower simulation accuracy

and the relative performance of different models is not

the same in Christie as it is for larger basins.

In this paper, all model comparisons are made

based on streamflow, an integrated measure of

hydrologic response, at basin and subbasin outlets.

The focus is on streamflow analysis because no

reliable measurements of other hydrologic variables

(e.g. soil moisture, evaporation) were obtained for this

study, and because streamflow (and the corresponding

stage) forecast accuracy is the bottom line for many

NWS hydrologic forecast products. Use of only

observed streamflow for evaluation does limit our

ability to make conclusions about the distributed

models’ representations of internal watershed

dynamics. Therefore, it is hoped that future phases

of DMIP can include comparisons of other hydrologic

variables.

Following this Section 1, Section 2 briefly

describes the participant models, the NWS lumped

model runs used for comparison, and events chosen

for analysis. Section 3 focuses on the overall

performance of distributed models, comparisons

among lumped and distributed models, and compari-

sons among calibrated and uncalibrated models at all

gauged locations. The variability of model simu-

lations at ungauged interior points and trends in

variability with scale are also discussed. Overall

statistics and event statistics defined by Smith et al.

(2004b) are presented for different models and

different basins.

2. Methods

2.1. Participant models and submissions

Twelve different participants from academic,

government, and private institutions submitted results

for the August 2002 DMIP workshop. Table 1

provides some information about participants and

general characteristics of the participating models.

The first column of Table 1 lists the main affiliations

for each participant, and the two or three letter

abbreviation for each affiliation shown in this column

will be used throughout this paper to denote results

submitted by that group. Since detailed descriptions of

the DMIP models are available elsewhere in the

literature or this issue (See Table 1, Column 3),
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Table 1

Participant information and general model characteristics

Participant Modeling

system name

Primary reference (s) Primary application Spatial unit for

rainfall–runoff

calculations

Rainfall–

runoff/vertical flux

model

Channel routing

method

Agricultural Research

Service (ARS)

SWAT Neitsch et al. (2002)

and Di Luzio and

Arnold (2004)

Land management/

agricultural

Hydrologic response

unit (HRU) (6–7 km2)

Multi-layer soil water

balance

Muskingum

University of Arizona

(ARZ)

SAC-SMA Khodatalab et al.

(2004)

Streamflow forecasting Subbasin (avg. size

,180 km2)

SAC-SMA Kinematic wave

Danish Hydraulics

Institute (DHI)

Mike 11 Havno et al. (1995)

and Butts et al. (2004)

Forecasting, design, water

management

Subbasins

(,150 km2)

NAM Full dynamic wave

solution

Environmental

Modeling Center

(EMC)

NOAH Land

Surface Model

http://www.emc.ncep.

noaa.gov/mmb/gcp/

noahlsm/

README_2.2.htm

Land-atmosphere interactions

for climate and weather

prediction models, off-line

runs for data assimilation and

runoff prediction

,160 km2 (1/8th

degree grids)

Multi-layer soil water

and energy balance

Linearized St Venant

equation

Hydrologic Research

Center (HRC)

HRCDHM Carpenter and

Georgakakos (2003)

Streamflow forecasting Subbasins

(59–85 km2)

SAC-SMA Kinematic wave

Massachusetts

Institute of

Technology (MIT)

tRIBS Ivanov et al. (2004) Streamflow forecasting, soil

moisture prediction, slope

stability

TIN (,0.02 km2) Continuous profile

soil-moisture

simulation with

topographicaly

driven, lateral,

element to element

interaction

Kinematic wave

Office of Hydrologic

Development (OHD)

HL-RMS Koren et al. (2004,

2003)

Streamflow forecasting 16 km2 grid cells SAC-SMA Kinematic wave

University of

Oklahoma (OU)

r.water.fea Vieux (2001) Streamflow forecasting 1 km2 or smaller Event based Green-

Ampt infiltration

Kinematic wave

University of

California at Berkeley

(UCB)

VIC-3L Liang, et al. (1994)

and Liang and Xi

(2001)

Land-atmosphere interactions ,160 and ,80 km2

(1/8th, 1/16th degree

grids)

Multi-layer soil water

and energy balance

One parameter simple

routing

Utah State University

(UTS)

TOPNET Bandaragoda et al.

(2004)

Streamflow forecasting Subbasins (,90 km2) TOPMODEL Kinematic wave

University of

Waterloo, Ontario

(UWO)

WATFLOOD Kouwen et al. (1993) Streamflow forecasting 1-km grid WATFLOOD Linear storage routing

Wuhan University

(WHU)

LL-II – Streamflow forecasting 4-km grid Multi-layer finite

difference model

Full dynamic wave

solution
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only general characteristics of these models are

provided in Table 1.

Table 1 highlights both differences and similarities

among modeling approaches. Some models only

consider the water balance, while others (e.g. UCB,

EMC, and MIT) calculate both the energy and water

balance at the land surface. The sizes of the water

balance modeling elements chosen for DMIP appli-

cations range from small triangulated irregular net-

work (TIN) modeling units (,0.02 km2) to

moderately sized subbasin units (,100 km2). Some

models account directly or indirectly for the effects of

topography on the soil-column water balance while

others only explicitly use topographic information for

channel and/or overland flow routing calculations.

There tend to be fewer differences in the choice of a

basic channel routing technique than the choice of a

rainfall–runoff calculation method. Many participants

use a kinematic wave approximation to the Saint-

Venant equations while only a few use a more

complex diffusive wave or full dynamic solution. The

methods used to estimate parameters and subdivide

channel networks in applying these routing techni-

ques do vary and are described in the individual

participant papers and the references provided. It

should be kept in mind that the accuracy of

simulations presented in this paper reflect not only

the appropriateness of the model structure, parameter

estimation procedures, and computational schemes of

the individual models, but also the skill, experience,

and time commitment of the individual modelers to

these particular basins.

The level of DMIP participation varied among

participants and is indicated in Table 2. Some

participants were able to submit all 30 simulations

requested in the modeling instructions (i.e. both

calibrated and uncalibrated results for all model

points), while others submitted more limited results.

An ‘x’ in Table 2 indicates that a flow time series was

received for the specified basin and case. Table 2

shows that 198 out of a possible 360 time series files

(30 cases £ 12 models) were submitted and analyzed

(55%). Given that research funding was not provided

for participation in DMIP (aside from a small amount

of travel money), this high level of participation is

encouraging. Results analyzed in this paper are based

on simulation time-series submitted to the NWS

Office of Hydrologic Development (OHD). It is

expected that individual participants may include

more updated or comprehensive results for their

models in other papers in this special issue.

In order to encourage as much participation as

possible, there was some flexibility allowed in the

types of submissions accepted for DMIP. Footnotes in

Table 2 indicate some of the non-standard sub-

missions that were accepted. Due to non-standard

and/or partial submissions, some graphics and tables

presented in this paper cannot include all participant

models; however, they do reflect all submissions

usable for the type of analysis presented. For example,

all models were run in continuous simulation mode

with the exception of the University of Oklahoma

(OU) event simulation model. It is difficult to

objectively compare event and continuous simulation

models because event simulation models must include

some type of scheme to define initial soil moisture

conditions, an inherent feature in continuous simu-

lation models. Overall statistics could not be com-

puted for the OU results, but event statistics were

computed when possible.

The University of California at Berkeley (UCB)

submitted daily rather than hourly simulation results

so only limited analyses (overall bias) of UCB results

are included in this paper.

To be fair to all participants, it was agreed at the

August 2002 workshop that analysis of any results

submitted after the workshop should be clearly

marked if they were to be included in this paper.

Although the Massachusetts Institute of Technology

(MIT) group was only able to submit simulations

covering a part of the DMIP simulation time period

prior to the August 2002 workshop, MIT was able to

submit simulations covering the entire DMIP period

in January 2003. Since the final simulations from MIT

are not much different than the initial simulations

during the overlapping time period, and use of the

entire time period for analyses makes statistical

comparisons more meaningful, statistics from the

January 2003 MIT submissions are presented in this

paper.

For those modelers who did submit calibrated

results, calibration strategies varied widely in their

level of sophistication, the amount of effort required,

and the amount of effort invested specifically for

the DMIP project. No target objective functions

were prescribed for calibration so, for example,

S. Reed et al. / Journal of Hydrology 298 (2004) 27–60 31



some participants may have placed more emphasis

on fitting flood peaks than obtaining a zero

simulation bias for the calibration period. This is

not a big concern in evaluating DMIP results

because a variety of statistics are considered and

results indicate that models with good results based

on one statistical criterion typically have good

results for other statistical criteria as well. Discus-

sion of participant parameter estimation and cali-

bration strategies is beyond the scope of this paper

but information about participant-specific procedures

can be found in the references listed in Table 1.

2.2. Lumped model

To provide a ‘standard’ for comparison, both

calibrated and uncalibrated lumped simulations were

generated at OHD for all of the gauged DMIP

locations. Techniques used to generate lumped

simulations are the same as those used for operational

forecasting at most NWS River Forecast Centers

(RFCs). The Sacramento Soil Moisture Accounting

(SAC-SMA) model (Burnash et al., 1973; Burnash,

1995) is used for rainfall–runoff calculations and the

unit hydrograph model is used for channel

Table 2

Level of participation

Model Christie Kansas Savoy4 Savoy5 Eldon Blue Watts4 Watts5 Tiff City Tahlequah

Cal Unc Cal Unc Cal Unc Cal Unc Cal Unc Cal Unc Cal Unc Cal Unc Cal Unc Cal Unc

Gauged Locations

ARS £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £

ARZ £ £ £ £

DHI £

EMC £ £ £ £ £ £ £ £ £ £

HRC £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £

MITa £ £ £ £ £ £

OHD £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £

OUb £ £ £ £ £ £ £ £ £ £

UCBc £

UTS £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £

UWO £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £

WHUd £

Eldp1 Blup1 Blup2 Wttp1 Tifp1

Cal Unc Cal Unc Cal Unc Cal Unc Cal Unc

Ungauged locations

ARS £ £ £ £ £ £ £ £ £ £

ARZ £ £

DHI £ £

EMC £ £ £ £ £

HRC £ £ £ £ £ £ £ £ £ £

MITa £ £ £ £ £ £

OHD £ £ £ £ £ £ £ £

OUb £ £ £ £

UCBc

UTS £ £ £ £ £ £ £ £ £ £

UWO £ £ £ £ £ £ £ £ £ £

WHUd

a Time series submitted in January 2003 that cover the entire DMIP study period are analyzed for this paper to make statistical comparisons

more meaningful.
b Simulations submitted only for selected events.
c Results have a daily time step.
d Calibration is based on only 1 year of observed flow (1998). Results submitted January 2003.
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flow routing. For the DMIP basin calibration runs,

SAC-SMA parameters were estimated using manual

calibration at OHD following the strategy typically

used at RFCs and described by Smith et al. (2003) and

Anderson (2003). As defined by Smith et al. (2004b),

the calibration period was June 1, 1993 to May 31,

1999. Model parameters routinely used for oper-

ational forecasting in the DMIP basins by the

Arkansas-Red Basin RFC (ABRFC) could not be

used directly to produce lumped simulations because

these parameters are based on 6-h calibrations (hourly

simulations are the standard in DMIP) with gauged-

based rainfall, and it is well known that SAC-SMA

model results are sensitive to the time step used

for model calibration (Koren et al., 1999; Finnerty

et al., 1997).

Lumped SAC-SMA parameters derived for the

DMIP basins are given in Table 3. No snow model

was included in the lumped runs for these basins

because snow has a very limited effect on the

hydrology of the DMIP basins. For the lumped

DMIP runs, constant climatological mean monthly

values for potential evaporation (PE) (mm/day) were

used. In the SAC-SMA model, evapotranspiration

(ET) demand is defined as the product of PE and a PE

adjustment factor, which is related to the vegetation

state. During manual calibration, PE adjustment

factors are initially assigned based on regional

knowledge but may be adjusted during the calibration

process to remove seasonal biases. The ET demand

values used for calibrated lumped DMIP runs are also

given in Table 3.

Because climatological mean ET demand values

were used for lumped runs, the only observed input

forcing required to produce the lumped model

simulations was hourly rainfall. Hourly time series

of lumped rainfall to force lumped model runs were

obtained by computing the areal averages from

hourly multi-sensor rainfall grids (the same rainfall

grids used to drive the distributed models being

tested). Areal averages for a basin were computed

using all rainfall grid cells with their center point

inside the basin. Algorithms used to develop the

multi-sensor rainfall products used in this study are

described by Seo and Breidenbach (2002), Seo et al.

(2000), Seo et al. (1999) and Fulton et al. (1998).

There are some known biases in the cumulative

precipitation estimates during the study period that

are discussed further in the results section (see also

Johnson et al., 1999; Young et al., 2000; ‘About the

StageIII Data’, http://www.nws.noaa.gov/oh/hrl/

dmip/stageiii_info.htm; Wang et al., 2000; Guo

et al., 2004). Smith et al. (2004a) discuss the spatial

variability of the precipitation data over the DMIP

basins independently of the hydrologic model

application.

For gauged interior points (Kansas, Savoy,

Christie, and Watts (when calibration is done at

Tahlequah)), there are no fully calibrated lumped

results. That is, no manual calibrations against

observed streamflow were attempted at these points;

however, we refer to lumped, interior point

Table 3

SAC-SMA and ET demand parameters for 1-h lumped calibrations

Parameter Blue Eldon,

Christie

Tahlequah,

Watts,

Kansas, Savoy

Tiff City

Uztwm (mm) 45 50 40 70

Uzfwm (mm) 50 25 35 34

Uzk (day21) 0.5 0.35 0.25 0.25

Pctim 0.005 0 0.005 0.002

Adimp 0 0 0.1 0

Riva 0.03 0.035 0.02 0.025

Zperc 500 500 250 250

Rexp 1.8 2 1.7 1.6

Lztwm (mm) 175 120 80 135

Lzfsm (mm) 25 25 27 21

Lzfpm (mm) 100 75 200 125

Lzsk (day21) 0.05 0.08 0.08 0.12

Lzpk (day21) 0.003 0.004 0.002 0.003

Pfree 0.05 0.25 0.1 0.15

Rserv 0.3 0.3 0.3 0.3

Month ET

Demand

(mm/day)

Jan 1.1 0.75 0.77 0.77

Feb 1.2 0.8 0.93 0.83

Mar 1.6 1.4 1.70 1.42

Apr 2.4 2.1 2.68 2.48

May 3.5 3.2 3.81 3.96

Jun 4.8 4.3 5.25 5.44

Jul 5.1 5.8 5.97 5.93

Aug 4.2 5.7 5.87 5.86

Sep 3.4 3.9 4.02 3.97

Oct 2.4 2.3 2.37 2.36

Nov 1.6 1.2 1.24 1.24

Dec 1.1 0.8 0.82 0.81
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simulations using the calibrated SAC-SMA parameter

estimates from parent basins as calibrated runs. As

shown in Table 3, the calibrated SAC-SMA par-

ameters for Eldon and Christie are the same, as are the

parameters for Tahlequah, Watts, Kansas, and Savoy.

There was an attempt to calibrate Tahlequah separ-

ately from Watts; however, since this analysis led to

similar parameters for both Tahlequah and Watts,

lumped simulation results used for analysis in DMIP

were generated using the same SAC-SMA parameters

for both Tahlequah and Watts.

To generate uncalibrated lumped SAC-SMA

parameters for parent basins and interior points,

areal averages of gridded a priori SAC-SMA para-

meters defined by Koren et al. (2003) were used.

Uncalibrated ET demand estimates were derived by

averaging gridded ET demand estimates computed by

Koren et al. (1998). Koren et al. (1998) produced 10-

km mean monthly grids of PE and PE adjustment

factors for the conterminous United States.

Hourly unit hydrographs for each of the parent

basins (Blue, Tahlequah, Watts, Eldon, and Tiff City)

were derived initially using the Clark time-area

approach (Clark, 1945) and then adjusted (if necess-

ary) during the manual calibration procedure. No

manual adjustments were made to the Clark unit

hydrographs for uncalibrated runs. Unit hydrographs

for interior point simulations were derived using the

same method but with no manual adjustment for both

‘calibrated’ and uncalibrated runs.

Fig. 1a and b show unit hydrographs used for the

lumped simulations. Looking at the unit hydrographs

for parent basins (Fig. 1a), the general trend that larger

basins tend to peak later makes sense. Tahlequah is

the largest basin, followed by Tiff City, Watts, Blue,

and Eldon (See Smith et al. (2004b) for exact basin

sizes). The shape of the Blue unit hydrograph is

somewhat unusual because it has a flattened peak and

no tail. The different hydrologic response character-

istics for the Blue River are also seen in the observed

data and distributed modeling results. The same

sensible trend is evident in Fig. 1b for the smaller

basins.

2.3. Events selected

For statistical analysis, between 16 and 24 storm

events were selected for each basin. Tables 4–8 list

events selected for Tahlequah and Watts, Kansas,

Savoy, Eldon and Christie, and Blue, respectively.

In some cases, the same time windows were selected

for both interior points and parent basins (e.g. Eldon

and Christie), while in other cases the time windows

are slightly different to better capture the event

hydrograph (e.g. Kansas and Savoy event windows

are different than the parent basins Tahlequah and

Watts). Fewer events were used for the Savoy analysis

because the available Savoy observed flow data

record does not start until October, 1995. For the

Blue River, some seemingly significant events were

excluded from the analysis because of significant

periods of missing streamflow observations.

The selection of storms was partially subjective

and partially objective. The method for selection was

primarily visual inspection of observed streamflow

and the corresponding mean areal rainfall values.

Although the goal of forecasting floods tends to

encourage analysis primarily of large events, we are

also interested in studying model performance over a

range of event sizes and the relationships between

Fig. 1. Unit hydrographs for (a) parent basins, and (b) interior

points.
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model structure and simulation performance over

various flow ranges. Therefore, all of the largest

storms were selected, several moderately sized

storms, and a few small storms. To the degree

possible, storms were selected uniformly throughout

the study period (approximately the same number

each year) and from different seasons.

Due to the subjective nature of defining the event

windows and the fact that different OHD personnel

selected event windows for different basins, there are

some subtle differences in how much of the storm tails

are included in the event windows. For example,

Eldon event windows tend to include less of the

hydrograph tail than windows defined for other

basins. This means that storm volumes for selected

events shown in Table 7 may not reflect all of the

runoff associated with that particular event. Also, in a

few cases, multiple flood peaks occurring close in

time were treated as one event (e.g. Event 21 for

Tahlequah and Watts) in one basin but as separate

events for another basin (e.g. Events 22–24 for

Eldon). These small differences in how event

windows were defined for different basins have little

impact on the conclusions of this paper.

3. Results and discussion

Overall statistics, event statistics, and event

improvement statistics will be presented and discussed.

Mathematical definitions of the statistics used here are

provided by Smith et al. (2004b). The event improve-

ment statistics (flood runoff improvement, peak flow

improvement, and peak time improvement) are used to

measure the improvement from distributed models

relative to lumped models and the improvement from

calibrated models relative to uncalibrated models.

3.1. Overall Statistics

Fig. 2a and b show the cumulative simulation

errors for models applied to the Watts and Blue River

basins. The vertical gray line in these figures indicates

the end of the calibration period. The trends in these

graphs reflect known historical bias characteristics in

the radar rainfall archives. At several times during the

1990’s, there were improvements to the algorithms

used to produce multi-sensor precipitation grids

at RFCs, and therefore the statistical characteristics

of multi-sensor precipitation grids archived at

Table 4

Selected events for Tahlequah and Watts

Event Start time End time Tahlequah

Peak (m3 s21)

Watts

Peak (m3 s21)

Tahlequah

volume (mm)

Watts

volume (mm)

1 1/13/1995 0:00 1/26/1995 24:00 430 345 50.6 54.1

2 3/4/1995 16:00 3/11/1995 15:00 202 191 15.3 17.5

3 4/20/1995 0:00 4/30/1995 23:00 362 402 31.4 38.4

4 5/7/1995 0:00 5/14/1995 23:00 580 535 52.8 51.6

5 6/3/1995 0:00 6/19/1995 23:00 436 410 56.9 58.8

6 5/10/1996 16:00 5/17/1996 13:00 262 252 18.1 20.9

7 9/26/1996 0:00 10/4/1996 23:00 542 590 35 37

8 11/4/1996 12:00 11/14/1996 23:00 498 525 32.9 38.8

9 11/24/1996 1:00 12/5/1996 9:00 483 449 63.1 71.8

10 2/19/1997 2:00 2/25/1997 23:00 597 536 38.8 41.2

11 8/17/1997 0:00 8/23/1997 23:00 42 62 4.94 5.8

12 1/4/1998 0:00 1/16/1998 23:00 729 727 81.5 84.6

13 3/16/1998 0:00 3/26/1998 23:00 349 315 48.4 49.6

14 10/5/1998 0:00 10/11/1998 23:00 206 179 17 14.9

15 2/7/1999 0:00 2/15/1999 23:00 276 233 28.4 23.2

16 4/4/1999 0:00 4/10/1999 23:00 132 151 17.3 22.4

17 5/4/1999 0:00 5/11/1999 23:00 370 343 35.7 31.7

18 6/24/1999 0:00 7/6/1999 23:00 556 627 48.4 55.9

19 1/2/2000 0:00 1/9/2000 23:00 40 45 5.71 5.31

20 5/26/2000 0:00 6/1/2000 23:00 191 170 14.3 12.6

21 6/15/2000 13:00 7/10/2000 23:00 992 870 191 172
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the ABRFC have changed over time (Young et al.,

2000; ‘About the StageIII Data’, http://www.nws.

noaa.gov/oh/hrl/dmip/stageiii_info.htm). In the ear-

lier years of multi-sensor precipitation processing,

gridded products tended to underestimate the amount

of rainfall relative to gauge-only rainfall estimates.

The underestimation of simulated flows in the early

years seen in Fig. 2 is consistent with this known

trend. In the latter part of the total simulation period

(June 1999–July 2000), the fact that the slopes of

the cumulative error curves tend to level off for

several of the models is a positive indicator that issues

of rainfall bias are being dealt with in the multi-sensor

rainfall processing procedures; however, a longer

Table 6

Selected events for Savoy

Event Start time End time Peak (m3 s21) Volume (mm)

1 5/10/1996 16:00 5/13/1996 13:00 190 24.7

2 9/26/1996 0:00 10/4/1996 23:00 26 10.5

3 11/5/1996 13:00 11/14/1996 23:00 313 55.4

4 11/24/1996 2:00 12/4/1996 9:00 202 86.6

5 2/20/1997 2:00 2/25/1997 23:00 274 47.4

6 8/17/1997 0:00 8/20/1997 23:00 10 1.5

7 1/4/1998 0:00 1/16/1998 23:00 823 135

8 3/16/1998 0:00 3/24/1998 23:00 137 47.1

9 10/5/1998 0:00 10/10/1998 23:00 166 24.9

10 2/7/1999 0:00 2/13/1999 23:00 150 24.1

11 4/3/1999 0:00 4/8/1999 23:00 93 22.9

12 5/4/1999 0:00 5/8/1999 23:00 184 24.5

13 6/29/1999 0:00 7/5/1999 23:00 350 45.3

14 1/2/2000 0:00 1/5/2000 23:00 25 4.1

15 5/26/2000 0:00 5/31/2000 23:00 145 19.9

16 6/16/2000 13:00 7/8/2000 23:00 651 204

Table 5

Selected events for Kansas

Event Start time End time Peak (m3 s21) Volume (mm)

1 1/13/1995 0:00 1/18/1995 23:00 60 30.7

2 3/6/1995 0:00 3/10/1995 23:00 22 12.8

3 5/6/1995 0:00 5/12/1995 23:00 94 47.7

4 6/8/1995 0:00 6/15/1995 23:00 27 40.2

5 5/10/1996 17:00 5/14/1996 23:00 14 6.99

6 9/26/1996 0:00 9/29/1996 23:00 79 17.2

7 11/6/1996 0:00 11/12/1996 23:00 27 16.4

8 11/24/1996 2:00 12/4/1996 23:00 45 46.4

9 2/20/1997 0:00 2/25/1997 23:00 272 53.9

10 8/17/1997 0:00 8/21/1997 23:00 5 3.92

11 1/4/1998 0:00 1/14/1998 23:00 72 61.3

12 3/16/1998 0:00 3/24/1998 23:00 37 38

13 10/5/1998 0:00 10/11/1998 23:00 27 13.8

14 2/7/1999 0:00 2/11/1999 23:00 85 26.4

15 4/4/1999 0:00 4/9/1999 23:00 8 9.35

16 5/4/1999 0:00 5/9/1999 23:00 89 39.5

17 6/24/1999 0:00 7/6/1999 23:00 162 57.3

18 1/3/2000 0:00 1/7/2000 23:00 6 4.37

19 5/27/2000 0:00 5/30/2000 23:00 9 4.61

20 6/16/2000 0:00 7/4/2000 23:00 538 207
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period of record will be required to confirm this

observation. For future hydrologic studies with multi-

sensor precipitation grids, OHD plans to do reanalysis

of archived multi-sensor precipitation grids to remove

biases and other errors; however it was not possible to

do this analysis prior to DMIP.

Fig. 2 shows that not all modelers placed priority

on minimizing simulation bias during the calibration

period as a criterion for calibration. NWS calibration

strategies (Smith et al., 2003; Anderson, 2003) do

emphasize producing a low cumulative simulation

bias over the entire calibration period and this strategy

is reflected in the lumped (LMP) model results. The

cumulative error for the Watts LMP model at the end

of the calibration period is about 297 mm or 4.1%

and the cumulative error for the Blue LMP model is

about 221 mm or 1.5%. As one might expect, several

of the calibrated distributed models (ARS, ARZ,

OHD, and HRC) also produce relatively small

cumulative errors over the calibration period. Models

that do achieve a small bias over the calibration period

tend to underestimate flows more in earlier years

(to about mid-1997), reflecting low rainfall estimates,

and overestimate flows in the later years up to the end

of the calibration period, in an attempt maintain a

small simulation bias over the whole period.

In the DMIP modeling instructions, a distinct

calibration period from June 1, 1993, to May 31,

1999, and validation period from June 1, 1999, to

July 31, 2000 were defined. However, many of the

statistics presented in this paper are computed over a

single time period that overlaps both the original

calibration and validation periods: April 1, 1994, to

July 31, 2000. There are several reasons for this. One

reason that the validation statistics are not presented

separately in most graphs and tables is that the

original validation period is relatively short and

contains only a few or no significant storm events

(no significant events on the Blue River). Early on in

DMIP the intention was to have a longer validation

period (i.e. through July, 2001) but the energy

forcing data required for some of the models was

Table 7

Selected events for Eldon and Christie

Event Start time End time Eldon peak

(m3 s21)

Eldon

volume (mm)

Christie peak

(m3 s21)

Christie

volume (mm)

1 11/4/1994 14:00 11/8/1994 24:00 152 27 9 20.4

2 1/13/1995 6:00 1/17/1995 23:00 289 43.6 9 24.9

3 4/20/1995 1:00 4/22/1995 23:00 205 19.8 4 11.8

4 5/6/1995 18:00 5/11/1995 23:00 532 62.8 26 42.9

5 6/9/1995 1:00 6/12/1995 23:00 133 28.7 3 0.6

6 1/18/1996 13:00 1/20/1996 23:00 217 14.3 1 2.1

7 4/22/1996 1:00 4/23/1996 4:00 221 9.42 6 3.2

8 5/10/1996 23:00 5/13/1996 12:00 189 15.6 2 5.4

9 9/26/1996 5:00 9/29/1996 23:00 874 62.8 53 48.4

10 11/7/1996 1:00 11/10/1996 23:00 429 38.3 7 20.1

11 11/16/1996 22:00 11/18/1996 23:00 129 11.9 4 8.0

12 11/24/1996 1:00 11/25/1996 15:00 347 28.2 10 14.7

13 2/20/1997 14:00 2/24/1997 23:00 893 62.3 51 43.3

14 1/4/1998 1:00 1/7/1998 23:00 894 75.7 62 41.7

15 1/8/1998 1:00 1/11/1998 18:00 197 39.3 7 21.6

16 3/15/1998 20:00 3/22/1998 23:00 217 54.4 9 33.6

17 10/5/1998 15:00 10/8/1998 23:00 274 20.8 4 6.6

18 3/12/1999 19:00 3/16/1999 23:00 187 32.8 8 23

19 5/4/1999 3:00 5/7/1999 23:00 351 30.1 12 18.6

20 6/30/1999 1:00 7/2/1999 23:00 100 10.2 1 2.5

21 5/26/2000 1:00 5/29/2000 23:00 260 20.8 2 5.5

22 6/17/2000 1:00 6/20/2000 18:00 303 31.7 9 18.6

23 6/20/2000 19:00 6/24/2000 23:00 1549 106 136 86.2

24 6/28/2000 1:00 7/1/2000 23:00 407 38.9 40 58.8
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only available through July 31, 2000, and therefore

the validation period duration was shortened. We feel

that for most graphs and tables, separately presenting

numerous statistical results for a distinct, but short,

validation period will not strengthen the conclusions

of this paper, but rather, would add unnecessary

length and detail. The starting date for the April,

1994 – July, 2000 statistical analysis period

(10 months after the June 1993 calibration start

date) allows for a model warm-up period to minimize

the effects of initial conditions on results. Unless

otherwise noted, this analysis period is used for all

statistics presented.

Fig. 3a and b show the overall Nash-Sutcliffe

efficiency (Nash and Sutcliffe, 1970) for uncalibrated

and calibrated models respectively for all basins while

Fig. 4a and b show the overall modified correlation

coefficients, rmod (McCuen and Snyder, 1975;

Smith et al., 2004b). Tables 9 and 10 list the overall

statistics used to produce Figs. 3 and 4. It is desirable

to have both Nash-Sutcliffe and rmod values close to

one. In Figs. 3a and 4a, dashed lines indicate

the arithmetic average of uncalibrated results. In

Figs. 3b and 4b, dashed lines for both the average of

uncalibrated and calibrated results are shown (each

point used to draw these lines is the average of all

model results for a given basin). These lines show an

across the board improvement in average model

performance after calibration.

Note that the results labeled ‘Watts4’ and ‘Savoy4’

shown in Figs. 3 and 4 correspond to modeling

instruction number 4 described by Smith et al.

(2004b), which specifies calibration at Watts rather

than at Tahlequah. Results for ‘Watts5’ and ‘Savoy5’

from calibration at Tahlequah are similar to ‘Watts4’

and ‘Savoy4’ (see discussion below), and therefore

are not included on these graphs.

The basins in Figs. 3 and 4 are listed from left to

right in order of increasing drainage area. A

noteworthy trend is that both the Nash–Sutcliffe

efficiency and correlation coefficient are poorer (on

average) for the smaller interior points (particularly

for Christie and Kansas). A primary contributing

factor to this may be that smaller basins have less

Table 8

Selected events for Blue

Event Start time End time Peak (m3 s21) Volume (mm)

1 4/25/1994 0:00 5/8/1994 23:00 224 59.1

2 11/12/1994 0:00 11/27/1994 23:00 215 43.8

3 12/7/1994 0:00 12/13/1994 23:00 142 22

4 3/12/1995 0:00 3/20/1995 23:00 148 30.2

5 5/6/1995 0:00 5/21/1995 23:00 289 71.8

6 9/17/1995 0:00 9/24/1995 23:00 47 5.1

7 9/26/1996 0:00 10/11/1996 23:00 156 10.6

8 10/19/1996 0:00 11/3/1996 23:00 253 37.4

9 11/6/1996 0:00 11/21/1996 23:00 483 48.4

10 11/23/1996 0:00 12/6/1996 23:00 230 62.3

11 2/18/1997 0:00 3/5/1997 23:00 194 44.9

12 3/25/1997 0:00 3/30/1997 23:00 60 6.1

13 6/9/1997 0:00 6/16/1997 23:00 130 8.2

14 12/20/1997 0:00 12/28/1997 23:00 120 22

15 1/3/1998 0:00 1/14/1998 23:00 176 59.3

16 3/6/1998 0:00 3/13/1998 23:00 118 15.8

17 3/14/1998 0:00 3/29/1998 23:00 204 51.6

18 1/28/1999 0:00 2/2/1999 23:00 25 3.6

19 3/27/1999 0:00 4/7/1999 23:00 172 17

20 6/22/1999 0:00 7/6/1999 23:00 29 5.7

21 9/8/1999 0:00 9/24/1999 23:00 17 3.4

22 12/9/1999 0:00 12/19/1999 23:00 26 3.0

23 2/22/2000 0:00 3/2/2000 23:00 11 2.6

24 4/29/2000 0:00 5/11/2000 23:00 23 4.8
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capacity to dampen out inputs and corresponding

input errors. Fig. 5 shows that observed streamflows in

small basins do in fact exhibit more variability than

streamflows on larger basins, making accurate

simulation more difficult. There is also more uncer-

tainty in the spatially averaged rainfall estimates for

smaller basins. Another possible contributing factor to

this trend for the calibrated results is that simulations

for Christie, Kansas, and Savoy used parameters

calibrated for the parent basin only, without the use of

streamflow data from the Christie, Kansas, or Savoy

gauges. However, this cannot be the only factor since

the trend exists for both calibrated and uncalibrated

results.

The fact that calibrated models have improved

statistics on average over uncalibrated models agrees

with the consensus in the literature cited in Section 1

that some type of calibration is beneficial when estima-

ting distributed model parameters from physical data.

The improvements from calibration are also evident in

Section 3.2 discussing event statistics (Fig. 17). Since

uncalibrated models do not have the benefit of

accounting for the known biases in the rainfall archives

over the calibration period and the calibrated models

do, one could question whether or not the calibrated

models would outperform uncalibrated models in the

absence of these biases. Overall rmod statistics

computed separately for the validation period (average

lines for all calibrated and uncalibrated models are

shown in Fig. 6) indicate that on average, the calibrated

models still outperform uncalibrated models in the

validation period, during which the calibration adjust-

ments cannot account for any rainfall biases.

3.2. Event statistics

The event statistics percent absolute runoff error

and percent absolute peak error for different basins are

shown in Figs. 7–14. Figs. 7a and 8a, etc. show

uncalibrated results and Figs. 7b and 8b, etc. show

calibrated results. The best results with the lowest

event runoff and peak errors are located nearest the

lower left corner in these graphs. Data used to produce

these graphs are summarized in Tables 11 and 12.

Looking collectively at the calibrated results in

Figs. 7 – 14, a calibrated model that performs

relatively well in one basin typically has about the

same relative performance in other basins with the

notable exception of the smallest basin (Christie). For

Christie (Fig. 7b), the UTS model produces by far the

best percent absolute event runoff error and percent

absolute peak error results; however, the UTS model

does not perform as well in the larger basins.

Although not a physical explanation, an examination

of the event runoff bias statistics shown in Table 13

can offer some understanding as to why this reversal

of performance occurs. The UTS model tends to

underestimate event runoff for all basins except Blue

and Christie. For Christie, although the UTS model

overestimates event runoff, it is a less extreme

overestimation than some of the other models. This

suggests that the UTS model’s tendency to simulate

relatively lower flood runoff serves it well statistically

in Christie where several other models significantly

overestimate flood runoff. Further study is needed to

understand the reason for the tendency of most models

to overestimate peaks in Christie. The performance of

the MIT and UWO models is also improved for

Fig. 2. Cumulative simulation errors for calibrated models: (a) Watts

and (b) Blue.
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Christie relative to the performance of these models in

the parent basin for Christie (Eldon, Fig. 10b).

For the calibrated results, the three models that

consistently exhibit the best performance on basins

other than Christie (LMP, OHD, and HRC) all use the

SAC-SMA model for soil moisture accounting. The

OHD and HRC distributed modeling approaches both

combine features of conceptual lumped models for

rainfall–runoff calculations and physically based

routing models. Although only available for the

Blue River, the DHI submission showed comparable

performance to these three models. Similar to

the OHD and HRC models, the DHI modeling

approach for the results presented here was to

subdivide the Blue River into smaller units (eight

subbasins supplied by OHD), apply conceptual rain-

fall–runoff modeling methods to those smaller units

(again, methods like those used in lumped models),

Fig. 3. Overall Nash-Sutcliffe efficiency for April 1994–July 2000: (a) uncalibrated models and (b) calibrated models.
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and then use a physically based method to route the

water to the outlet (DHI used a fully dynamic solution

of the St. Venant equation). The same eight subbasins

used by DHI were also used in the earlier modeling

studies by Boyle et al. (2001) and Zhang et al. (2004).

For the better performing models, the percent

absolute peak errors shown in Figs. 7–14 are

noticeably higher for the three smallest basins, while

the percent absolute runoff errors appear to be less

sensitive to basin size.

Improvement indices quantifying the benefits of

calibration on event statistics are described in Section

3.3, but comparing uncalibrated and calibrated graphs

in Figs. 7–14 also provides a sense of the gains that

were made from calibration for various models. The

scales for uncalibrated and calibrated graph pairs are

Fig. 4. Overall rmod for April 1994–July 2000: (a) uncalibrated models and (b) calibrated models.
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Table 9

Overall Nash–Sutcliffe efficiencies for Fig. 3

Christie Kansas Savoy4 Eldon Blue Watts4 Tiff City Tahlequah

Uncalibrated

LMP 0.29 0.36 0.61 0.61 0.63 0.71 0.54 0.72

ARS 25.03 22.29 0.44 0.17 0.14 20.28 21.35 20.33

ARZ 20.70 20.29

EMC 0.06 0.22 0.34 0.25 0.40 0.37 0.35 0.38

HRC 0.28 0.27 0.66 0.30 0.34 20.24 0.55

MIT 0.59 0.36 0.61

OHD 20.15 0.52 0.66 0.70 0.52 0.69 0.15 0.75

UTS 20.69 0.23 0.06 0.60 0.31 0.42 0.04 0.62

UWO 20.46 0.11 0.10 0.29 20.06 0.03 0.05 0.10

Calibrated

LMP 20.26 0.53 0.71 0.85 0.72 0.83 0.69 0.87

ARS 22.58 20.69 0.60 0.37 0.33 0.38 20.06 0.27

ARZ 0.46 0.72

DHI 0.73

HRC 0.67 0.68 0.79 0.68 0.81 0.71 0.82

MIT 0.12 0.57 0.53

OHD 20.43 0.66 0.72 0.80 0.73 0.82 0.66 0.85

UTS 0.59 0.47 0.52 0.76 0.58 0.72 0.57 0.76

UWO 0.10 0.01 0.35 0.51 0.21 0.48 0.32 0.58

WHU 0.14

Table 10

Overall modified correlation coefficients ðrmod) for Fig. 4

Christie Kansas Savoy4 Eldon Blue Watts4 Tiff City Tahlequah

Uncalibrated

LMP 0.58 0.46 0.70 0.60 0.77 0.80 0.65 0.86

ARS 0.18 0.24 0.74 0.59 0.64 0.47 0.34 0.46

ARZ 0.41 0.45

EMC 0.53 0.46 0.37 0.29 0.57 0.68 0.67 0.64

HRC 0.60 0.60 0.82 0.22 0.60 0.46 0.70

MIT 0.50 0.64 0.62

OHD 0.47 0.56 0.74 0.73 0.71 0.86 0.54 0.88

UTS 0.33 0.52 0.42 0.79 0.60 0.63 0.51 0.68

UWO 0.40 0.54 0.40 0.52 0.52 0.52 0.53 0.54

Calibrated

LMP 0.46 0.61 0.75 0.88 0.86 0.85 0.73 0.93

ARS 0.24 0.35 0.57 0.53 0.64 0.67 0.50 0.56

ARZ 0.74 0.81

DHI 0.78

HRC 0.69 0.73 0.81 0.79 0.86 0.79 0.87

MIT 0.55 0.49 0.50

OHD 0.43 0.63 0.74 0.89 0.86 0.87 0.72 0.89

UTS 0.78 0.44 0.49 0.70 0.74 0.72 0.63 0.75

UWO 0.54 0.61 0.60 0.59 0.57 0.67 0.62 0.72

WHU 0.56
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the same, and in general, the uncalibrated results are

more scattered, dictating the domain and range

required for the graph pairs presented. A big

improvement from an uncalibrated to a calibrated

result for an individual model does not necessarily

indicate better calibration techniques were used for

that model. It could mean that the scheme used with

that model to estimate initial (uncalibrated) model

parameters is less effective and therefore the potential

gain from calibration is greater.

Not all participants in DMIP defined calibration in

the same way, and varying levels of emphasis were

placed on calibration. For example, EMC submitted

only uncalibrated results. Among uncalibrated models,

the relative performance of the EMC model is

interesting because it varies quite a bit among different

basins. It is surprising that the relatively coarse

resolution EMC model (1/8 degree grid boxes) does

relatively well in terms of the percent peak error statis-

tics for Christie (similar performance to the calibrated

UTS model). Visual examination of event hydrographs

(not shown here) reveals that the EMC model predicts

relatively good flood volume and peak flow estimates

for Christie. However, as might be expected with such

a coarse resolution, the shapes of hydrographs are

rather poor (wide at the top with steep recessions).

Some caution is warranted in interpreting the

results for Christie given that some of the distributed

Christie submissions were generated by models with a

relatively coarse computational resolution compared

to the size of the basin (e.g. EMC and OHD). These

models would not satisfy the criterion suggested by

Kouwen and Garland (1989) that at least five

subdivisions are required to provide a meaningful

representation of a basin’s area and drainage pattern

with a distributed model. Numerical experiments run

in OHD using multi-sensor precipitation data in and

around the DMIP basins suggest a similar criterion.

These experiments showed that representing a basin

using ten or more elements significantly reduces the

error dependency on the scale of rainfall averaging.

3.3. Event improvement statistics

Fig. 15a–c show flood runoff, peak flow, and peak

time improvement for calibrated distributed models

relative to the ‘standard’ calibrated lumped model.

There are 51 points (model-basin combinations) shown

in each of Fig. 15a–c. To prevent outliers in small

basins from dominating the graphing ranges for all

basins, different plotting scales are used for the three

smallest basins (Christie, Kansas, and Savoy). There

are more cases when the lumped model outperforms a

distributed model (negative improvement) than when a

distributed model outperforms the lumped model.

Only 14% of cases show flood runoff improvement

greater than zero, 33% show peak flow improvement

greater than zero, and 22% show peak time improve-

ment greater than zero. The percentages of cases with

flood runoff and peak flow improvement statistics

greater than 25% are 43 and 51%, respectively, and in

33% of cases, peak time improvements are greater than

21 h. Therefore, although there are many cases where

certain calibrated distributed models cannot outper-

form the calibrated lumped model, there are also

Fig. 5. Coefficients of Variation (CV) for hourly streamflow, April

1994–July 2000 (*Savoy period is October 1995–July 2000).

Fig. 6. Overall rmod: Averaged values for calibrated and

uncalibrated models during the validation period (June 1999–July

2000).
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Figs. 7–14. Event percent absolute runoff error versus event percent absolute peak error for (a) uncalibrated and (b) calibrated cases.
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Figs. 7–14. (continued)
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a significant number of cases when distributed models

perform at a level close to or better than the lumped

model.

Among calibrated models applied to multiple

basins, no one model was able to produce positive

improvements for all types of statistics (flood runoff,

peak flow, and peak time) in all basins; however, the

OHD model exhibited positive improvements in peak

flow for all basins. The largest percentage gains and the

most numerous cases with gains from distributed

models are in predicting the peak flows for the Blue

River and Christie (Fig. 15b). Three models (OHD,

DHI, and HRC) showed peak flow improvement for the

Blue River and four models (UTS, UWO, OHD, and

MIT) showed peak flow improvement for Christie.

Among the parent basins in DMIP, the Blue River has

distinguishable shape, orientation, and soil character-

istics (See Smith et al. 2004b; Zhang et al., 2004). One

possible explanation for the improved calibrated, peak

flow results in Christie is that the lumped ‘calibrated’

model parameters (from the parent basin calibration)

are scale dependent and will not outperform

parameters that account for spatial variability in the

basin if transferred directly from a parent basin to

interior points without adjustment.

Fig. 16a–c show flood runoff, peak flow, and peak

time improvement for uncalibrated distributed models

relative to the uncalibrated lumped model. As with the

calibrated models, there are more model-basin

combinations when a lumped model outperforms a

distributed model (negative improvement) than when

a distributed model outperforms a lumped model.

There are 56 model-basin cases plotted in each of Fig.

16a–c. Flood runoff improvement is positive in 22%

of cases, peak flow improvement positive in 25% of

cases, and peak time improvement positive in 24% of

cases. The percent of cases with improvement

statistics greater than or equal to 25% is 40% for

flood runoff and 45% for peak flow, and in 25% of

cases, peak time improvements are greater than 21 h.

The percentage of cases in which improvement is seen

from uncalibrated lumped to uncalibrated distributed

models is similar to the percentage of cases where

improvement was seen from calibrated lumped to

Table 11

Event percent absolute runoff error used for Figs. 6–13

Christie Kansas Savoy4 Eldon Blue Watts4 Tiff City Tahlequah

Uncalibrated

LMP 32.4 26.9 29.1 30.2 30.9 23.1 30.8 23.7

ARS 93.8 66.1 30.4 46.3 57.0 47.0 75.8 48.7

ARZ 65.0 27.2

EMC 37.3 31.5 17.1 45.0 32.3 21.5 33.1 18.8

HRC 26.5 17.9 25.5 68.3 16.1 37.5 15.6

MIT 43.7 33.7 39.8

OHD 34.8 26.8 28.3 27.4 38.1 22.5 39.4 21.7

OU 70.0 35.5 43.0

UTS 74.5 39.5 39.3 31.7 67.5 38.4 75.8 32.7

UWO 72.5 49.7 42.0 38.1 86.5 42.9 59.3 42.0

Calibrated

LMP 52.8 23.7 21.1 18.5 22.5 12.9 22.9 12.6

ARS 63.7 49.7 26.9 42.3 47.2 32.2 52.6 35.4

ARZ 48.2 22.7

DHI 24.2

HRC 27.1 16.0 20.9 26.1 18.0 24.0 17.0

MIT 46.8 45.1 34.0

OHD 55.4 23.8 19.9 16.4 24.7 11.9 23.3 11.3

OU 55.2 35.0 29.9

UTS 31.4 26.1 24.7 25.8 41.6 20.3 35.7 17.5

UWO 56.6 36.8 45.1 34.2 55.3 39.9 53.8 34.1

WHU 49.5
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calibrated distributed. Note that the performance of

the uncalibrated lumped model (and the OHD

uncalibrated model) is governed in a large part by

the a-priori SAC-SMA parameter estimation pro-

cedures defined by Koren et al. (2003b).

An interesting trend in the peak time improvement

for both calibrated and uncalibrated results compared

to lumped results (Figs. 15c and 16c) is that less

improvement is achieved in larger basins (basins are

listed from left to right in order of increasing drainage

area on the x-axis). In fact, none of the distributed

models outperform the lumped models in predicting

peak time for the three largest basins. Although a

definitive reason for this cannot be identified from the

analyses done for this paper, one causative factor to

consider from our experience in running the OHD

distributed model is that the predicted peak time from

a physically based routing scheme (with velocities

dependent on flow rate) is more sensitive to errors in

runoff depth estimation from soil moisture accounting

than a linear (e.g. unit hydrograph) routing scheme

with constant velocities at all flow levels. Therefore, if

runoff is overestimated, the distributed model would

tend to predict an earlier peak and if the volume is

underestimated the distributed model would tend to

predict a later peak, while the unit hydrograph would

predict the same peak time regardless of runoff depth.

This factor would likely have a greater impact in

larger basins.

Fig. 17a–c summarize the improvements gained

from calibration. Fig. 17a shows flood runoff

improvement gained by calibration for each model

in each basin, Fig. 17b shows the peak flow

improvement, and Fig. 17c shows the peak time

improvement. There are 53 points (model-basin

combinations) shown in each of Fig. 17a–c. The

majority of points show gains from calibration.

Positive flood runoff improvement is seen for 91%

of the cases shown, positive peak flow improvement is

attained in 66% of the cases, and positive peak time

improvement is seen in 70% of the cases.

An interesting note about the OHD results shown

in Fig. 17a–c is that this distributed model showed, in

some cases, comparable or greater improvements due

Table 12

Event percent absolute peak error used for Figs. 6–13

Christie Kansas Savoy4 Eldon Blue Watts4 Tiff City Tahlequah

Uncalibrated

LMP 67.1 57.1 54.5 53.4 42.8 30.5 37.6 25.6

ARS 246.3 106.1 52.2 49.6 39.2 35.2 51.8 38.1

ARZ 104.3 88.2

EMC 55.9 63.9 76.4 68.6 41.7 33.9 43.0 34.5

HRC 72.9 67.2 32.2 61.2 89.9 115.8 69.3

MIT 62.4 66.5 43.2

OHD 88.3 52.8 49.4 45.3 40.3 30.3 42.6 24.7

OU 62.1 48.5 47.5

UTS 59.4 62.3 69.7 43.9 61.4 33.1 58.3 27.9

UWO 75.9 61.8 69.1 58.0 51.2 35.0 49.8 29.1

Calibrated

LMP 126.0 55.8 52.0 26.0 34.8 30.2 31.9 25.8

ARS 191.5 78.7 56.2 55.9 35.7 39.5 50.9 44.6

ARZ 41.1 33.2

DHI 31.2

HRC 53.2 47.4 35.3 33.1 32.9 32.8 25.9

MIT 96.4 54.1 38.7

OHD 115.0 53.0 49.0 25.8 25.0 26.4 30.8 20.5

OU 64.9 47.4 64.1

UTS 59.0 65.9 67.0 41.0 45.9 36.1 43.3 37.6

UWO 74.9 63.9 64.5 54.6 70.0 30.2 50.8 29.0

WHU 51.9
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to calibration compared with the lumped model. This

occurs even though calibration procedures for dis-

tributed models are not as well defined and signifi-

cantly less effort was put into the OHD distributed

model calibrations than the lumped model calibra-

tions for DMIP. Although other distributed models

also show greater improvement after calibration than

the lumped model, this may be due to large

differences in uncalibrated parameter estimation

procedures. The comparison is more pertinent for

the OHD model because the OHD and lumped models

use the same rainfall–runoff algorithm (SAC-SMA)

and the same estimation scheme for the uncalibrated

SAC-SMA parameters.

Fig. 15. Distributed results compared to lumped results for calibrated models. (a) Flood runoff improvement, (b) flood peak improvement, and

(c) peak time improvement.

S. Reed et al. / Journal of Hydrology 298 (2004) 27–6048



Each data point shown in Figs. 15–17 is an

aggregate measure of the performance of a specific

model in a specific basin for many events. Data used

to produce Figs. 15 – 17 are summarized in

Tables 14–16. Plotting all of the statistical results

for all the events, all basins, and all models would be

too lengthy for this paper. However, a few plots

showing results for individual events are included

here to illustrate the significant scatter in model

performance on different events.

Fig. 18a (uncalibrated) and b (calibrated), plots of

the peak flow errors from the distributed model versus

the peak flow errors from the lumped model for the

Eldon basin, show significant scatter. Each point

Fig. 16. Distributed results compared to lumped results for uncalibrated models. (a) Flood runoff improvement, (b) flood peak improvement, and

(c) peak time improvement.
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represents a result for a single model and a single

event. For points below the 45 degree line, the

distributed model outperforms the lumped model. For

Eldon, it is interesting to see more cases with gains

going from uncalibrated lumped to uncalibrated

distributed than going from calibrated lumped to

calibrated distributed. Eldon is somewhat unusual in

this regard, as indicated by the results in Figs. 15b and

16b. Perhaps in the case of Eldon spatial variability is

an important factor in runoff generation but less

Fig. 17. Calibrated results compared to uncalibrated results. (a) Flood runoff improvement, (b) flood peak improvement, and (c) peak time

improvement.
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Table 13

Event percent runoff bias

Christie Kansas Savoy4 Eldon Blue Watts4 Tiff City Tahlequah

Calibrated

LMP 49.1 20.5 210.5 22.1 7.3 20.8 11.4 22.1

ARS 35.3 0.1 24.1 218.0 35.1 28.1 10.7 211.5

ARZ 2 2 33.7 2 2 1.2 2 2

DHI 2 2 2 2 210.8 2 2 2

HRC 13.3 21.4 27.1 6.0 4.8 11.2 9.5

MIT 24.6 237.9 223.0

OHD 52.7 1.2 28.7 0.3 14.6 1.5 14.3 20.6

OU 236.8 220.6 28.5

UTS 21.6 211.0 22.3 214.1 28.0 26.9 29.7 25.8

UWO 53.7 27.5 12.3 26.7 49.2 21.3 33.1 18.8

WHU 11.4

Table 14

Event improvement statistics: distributed results compared to lumped results for calibrated models

ARS HRC OHD UTS UWO OU ARZ MIT DHI WHU

Flood runoff

Christie 210.9 22.6 21.4 23.9 6.0

Kansas 226.1 23.4 20.1 22.4 213.2 231.7

Savoy 26.2 4.8 1.0 23.9 217.4 227.4

Eldon 223.8 22.5 2.1 27.4 215.7 226.7

Blue 224.7 23.6 22.3 219.2 232.8 215.8 211.5 21.7 220.9

Watts 219.5 25.1 0.9 27.5 227.1 29.9

Tiff City 229.6 21.0 20.3 212.7 230.9

Tahlequah 222.7 24.2 1.4 24.8 221.4 217.1

Flood Peak

Christie 265.4 11.0 67.0 51.1 29.7

Kansas 222.9 2.6 2.8 210.1 28.1 29.2

Savoy 24.2 4.6 3.0 215.0 212.5 10.9

Eldon 229.9 29.3 0.3 215.0 228.6 228.1

Blue 20.8 1.7 9.9 211.1 235.1 216.2 23.9 3.6 213.6

Watts 29.4 22.7 3.8 25.9 20.1 23.1

Tiff City 219.0 20.9 1.1 211.4 218.9

Tahlequah 218.7 0.0 5.4 211.8 23.2 239.0

Peak time

Christie 28.5 21.6 21.4 2.3 20.2

Kansas 22.8 1.0 2.0 1.1 0.6 2.2

Savoy 23.8 1.9 0.3 20.4 24.3 211.8

Eldon 27.8 22.5 21.1 0.5 24.8 22.8

Blue 213.5 22.3 3.3 4.5 22.8 210.1 23.4 20.8 216.7

Watts 222.3 20.7 22.2 21.4 25.3 29.4

Tiff City 216.7 20.5 21.5 21.3 22.3

Tahlequah 229.6 24.2 25.9 26.0 23.7 215.0
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important in affecting hydrograph shape so the

lumped calibration is able to account for the spatially

variable runoff generation, leaving less potential for

gains from distributed runoff and routing in the

calibrated case.

We infer based on DMIP results and other

results reported in the literature (Zhang et al., 2004;

Koren et al., 2004; Smith et al., 2004a) that spatial

variability of rainfall does have a big impact on

hydrograph shape in the Blue River and this is why

noticeable gains are achieved by running a distributed

model. Similar to Fig. 18a and b; Fig. 19a (uncali-

brated) and 19b (calibrated) show the peak flow errors

from distributed models versus the peak flow errors

from the lumped model, but for the Blue basin.

However, to remove some of the scatter and

emphasize the significant improvements possible for

the Blue river basin, only results from the three best

performing models (in terms of event peak flows for

Blue) are plotted.

To force the same domain and range for plotting in

Figs. 18 and 19, the plotting range is defined by the

range of errors that existed in the lumped model

simulations. Since the maximum errors for distributed

models are greater than the maximum errors for

lumped models, some data points are not seen in

Figs. 18 and 19.

3.4. Additional analysis for interior points

One of the big benefits of using distributed models

is that they are able to produce simulations at interior

points; however, studies are needed to quantify the

accuracy and uncertainty of interior point simulations.

Streamflow data from a limited number of interior

points were provided in DMIP. These interior points

include Watts (given calibration at Tahlequah),

Savoy, Kansas, and Christie. Based on the presen-

tation and discussion of overall and event-based

statistics above, it is seen that some models are able to

Table 15

Event improvement statistics: distributed results compared to lumped results for uncalibrated models

ARS HRC OHD UTS UWO OU ARZ MIT EMC

Christie 261.6 22.5 242.2 240.1 25.0

Kansas 239.3 0.3 20.1 212.7 223.0 243.3 24.7

Savoy 21.2 11.3 0.9 210.2 212.7 235.7 214.5 12.1

Eldon 216.1 4.7 2.8 21.6 27.9 214.9

Blue 226.1 237.4 27.1 236.6 255.6 29.8 22.8 21.3

Watts 224.0 6.9 0.6 215.6 219.9 24.3 216.8 1.5

Tiff City 245.0 26.1 27.9 241.5 226.3 22.0

Tahlequah 224.8 8.2 2.0 28.8 218.2 218.8 4.9

Christie 2179.2 221.2 7.7 28.8 11.2

Kansas 249.0 215.8 4.3 25.2 24.7 25.0 26.8

Savoy 2.3 212.7 5.1 215.2 214.6 249.8 27.8 221.9

Eldon 3.9 21.2 8.1 9.5 24.6 215.2

Blue 3.7 218.4 2.5 218.6 28.4 210.4 223.7 1.1

Watts 24.7 259.4 0.3 22.5 24.4 257.6 212.6 23.3

Tiff City 214.2 267.2 24.3 217.7 210.4 24.6

Tahlequah 212.5 243.7 0.9 22.3 23.5 222.0 28.9

Christie 27.0 21.6 5.9 7.1 7.5

Kansas 21.5 1.2 4.4 27.3 22.7 5.0 25.5

Savoy 20.1 26.8 0.2 221.1 211.4 28.6 0.5 210.1

Eldon 22.3 3.4 3.0 0.7 29.1 210.9

Blue 218.1 22.0 22.8 0.7 24.5 28.2 23.1 214.4

Watts 212.1 26.4 21.3 22.8 218.6 28.7 21.2 211.6

Tiff City 217.8 25.6 24.1 21.4 211.9 217.2

Tahlequah 228.3 25.2 23.5 28.0 221.3 220.6 220.3
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produce reasonable simulations for these interior

points, although errors are typically greater than for

parent basins.

Another question that can be investigated with

DMIP data is whether a model calibrated at a smaller

basin (Watts) shows advantages in simulating flows at

a common interior point with a model calibrated at a

larger parent basin (Tahlequah). One of the tests

requested in the DMIP modeling instructions (instruc-

tion 4) was for modelers to calibrate models at Watts

and submit the resulting simulations for both Watts

and two interior points (Savoy and an ungauged point)

without using interior flow information. Modeling

instruction 5 requested that the same be done for

Tahlequah, with interior simulations generated at

Watts, Savoy, and Kansas. For the common points

(Watts and Savoy) from instructions 4 and 5, Figs. 20

and 21 compare the event percent absolute runoff

error and percent absolute peak error statistics. Points

above the 1:1 line indicate improvement after

calibration at Watts. For the percent absolute runoff

error results (Figs. 20a and 21a), none of the models

showed significant improvement after calibration at

Watts. This is perhaps not surprising considering the

conclusion from the lumped calibration of Tahlequah

and Watts that the same SAC-SMA parameter set

produces reasonable results in both basins. For the

peak flow error results, only the UTS model showed

improvement.

Simulations were also requested at several

ungauged interior points. One way to examine these

results in the absence of observed streamflow data is to

compare coefficients of variation (CVs) from different

models. Simulated (calibrated) and observed CVs for

flow are plotted against drainage area in Fig. 22a and b.

The area range plotted in Fig. 22a encompasses all of

Table 16

Event improvement statistics: calibrated results compared to uncalibrated results

ARS HRC OHD UTS UWO OU ARZ LMP MIT

Flood runoff

Christie 30.2 220.6 43.1 15.8 220.5

Kansas 16.3 20.6 0.5 13.4 12.9 14.8 3.1

Savoy 3.4 2.0 2.4 14.7 3.8 16.7 8.4

Eldon 4.0 4.5 11.0 6.0 3.9 11.7

Blue 9.8 42.2 13.3 25.8 31.2 0.5 8.4 5.5

Watts 14.7 21.7 10.5 18.3 3.1 4.5 10.2

Tiff City 23.3 13.6 16.2 40.3 5.6 7.9

Tahlequah 13.3 21.3 2.1 15.1 7.8 13.1 11.1

Flood peak

Christie 54.8 226.7 0.4 1.0 258.9

Kansas 27.5 19.7 20.7 23.6 22.1 22.9 1.3

Savoy 24.0 19.8 0.1 2.7 4.6 63.2 2.5

Eldon 26.3 23.1 19.5 2.9 3.4 27.4

Blue 3.5 28.1 15.4 15.5 218.7 1.1 8.0 27.8

Watts 24.3 57.1 3.9 23.0 4.8 54.9 0.4

Tiff City 1.0 83.1 11.8 15.0 21.0 5.7

Tahlequah 54.8 226.7 0.4 1.0 258.9

Peak time

Christie 0.0 1.5 25.8 23.3 1.5

Kansas 1.7 2.7 4.8 11.3 6.2 0.1 2.9

Savoy 21.0 11.3 2.7 23.3 9.8 20.6 2.625

Eldon 20.5 21.0 0.8 4.7 27.1 5.2

Blue 4.5 20.3 6.1 3.8 1.6 21.5 0.0 20.3

Watts 26.8 9.0 2.0 4.7 16.6 2.6 3.3

Tiff City 0.53 4.65 2.06 20.41 9.12 20.53

Tahlequah 0.2 2.5 21.2 3.5 19.2 7.1 1.5
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the DMIP basins while Fig. 22b provides a more

detailed look at results for smaller basins. In Fig. 22a,

the LMP, OHD, and HRC models reasonably approxi-

mate the trend of increasing CV with decreasing

drainage area over the scales of most DMIP basins. It is

not possible to infer much about the accuracy of

simulated CV values for the range of scales shown in

Fig. 22b because only one point with observed data

(Christie at 65 km2) is available. However, it is

interesting that the UTS model, which had the best

percent absolute runoff error and peak flow statistics

for Christie among calibrated models, tends to under-

estimate the CV for Christie, as it does for the larger

basins with observed data. It turns out that the standard

deviation of flows predicted by the UTS model for

Christie is close to that of the observed data but the

mean flow predicted by the UTS model is too high, due

primarily to high modeled base flows.

Fig. 18. Distributed percent absolute peak flow errors vs. lumped percent absolute peak flow errors for Eldon events: (a) uncalibrated and (b)

calibrated models.
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4. Conclusions

A major goal of DMIP is to understand the

capabilities of existing distributed modeling methods

and identify promising directions for future research

and development. The focus of this paper is to

evaluate and intercompare streamflow simulations

from existing distributed hydrologic models forced

with operational NEXRAD-based precipitation data.

A significant emphasis in the analysis is on compari-

sons of distributed models to lumped model

simulations of the type currently used for operational

forecasting at RFCs.

The key findings are as follows:

† Although the lumped model outperformed distrib-

uted models in more cases than distributed

models outperformed the lumped model, some

calibrated distributed models can perform at a level

comparable to or better than a calibrated lumped

model (the current operational standard). The wide

range of accuracies among model results suggest

that factors such as model formulation, parameter-

ization, and the skill of the modeler can have a

bigger impact on simulation accuracy than simply

whether or not the model is lumped or distributed.

† Clear gains in distributed model performance can

be achieved through some type of model cali-

bration. On average, calibrated models outper-

formed uncalibrated models during both the

calibration and validation (limited length) periods.

† Gains in predicting peak flows from distributed,

calibrated models (Fig. 15b) were most noticeable

in the Blue and Christie basins. The Blue basin has

distinguishable shape, orientation, and soil charac-

teristics from other basins in the study. The Blue

results are consistent with those of previous studies

cited in Section 1 and indicate that the gains from

Fig. 19. Distributed percent absolute peak flow errors vs. lumped

percent absolute peak flow errors for Blue events: (a) uncalibrated

and (b) calibrated models. Data shown are for the three distributed

models with the lowest average absolute peak flow simulation error

for Blue.

Fig. 20. Comparisons of results at Savoy from initial calibrations at

Tahlequah (instruction 5) and Watts (instruction 4): (a) event

percent absolute runoff error and (b) event percent absolute peak

flow error.
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applying a distributed simulation model at NWS

forecast basin scales (on the order of 1000 km2)

will depend on the basin characteristics. Christie is

distinguishable in this study because of its small

size.

† Christie had distinguishable results from the larger

basins studied, not just in overall statistics, but in

relative inter-model performance compared with

larger basins. One explanation offered for the

improved calibrated, peak flow results (Fig. 15b) is

that the lumped ‘calibrated’ model parameters

(from the parent basin calibration, Eldon) are scale

dependent and distributed model parameters that

account for spatial variability within Eldon are less

scale dependent. Some caution is advised in

interpreting the results for Christie for model

submissions with a relatively coarse cell resolution

compared to the size of the basin (e.g. EMC

and OHD). Since no other basins in DMIP are

comparable in size to Christie, more studies on

small, nested basins are needed to confirm and

better understand these results.

† Among calibrated results, models that combine

techniques of conceptual rainfall – runoff and

physically based distributed routing consistently

showed the best performance in all but the smallest

basin. Gains from calibration indicate that deter-

mining reasonable a priori parameters directly

from physical characteristics of a watershed is

generally a more difficult problem than defining

reasonable parameters for a conceptual lumped

model through calibration.

† Simulations for smaller interior basins where no

explicit calibration was done exhibited reasonable

performance in many cases, although not as good

statistically as results for larger, parent basins. The

relatively degraded performance in smaller basins

occurred both in cases when parent basins were

calibrated and when they were uncalibrated, so the

degraded performance was not simply a function of

the fact that no explicit calibration at interior points

was allowed.

Fig. 21. Comparisons of results at Watts from initial calibrations at

Tahlequah (instruction 5) and Watts (instruction 4): (a) event

percent absolute runoff error and (b) event percent absolute peak

flow error.

Fig. 22. Flow coefficients of variation for observed flows (solid line)

and modeled flows (for both gaged and ungaged locations): (a) all

basin sizes and (b) a closer look at the small basins.
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† Distributed models designed for research can be

applied successfully using operational quality data.

Several models responded similarly to long term

biases in archived multi-sensor precipitation grids.

Ease of implementation could not be measured

directly. However, an indirect indicator of opera-

tional practicability is that several participants

were able to submit a full set or nearly a full set of

simulations (Table 2) with no financial support and

in a relatively short time.

This study did not address the question of whether

or not simulation model improvements will translate

into operational forecast improvements. One import-

ant issue in operational forecasting is the use offorecast

precipitation data. Because forecast precipitation data

have a lower resolution and are much more uncertain

than the observed precipitation used in this study, the

benefits of distributed models may diminish for longer

lead times that rely more heavily on forecast

precipitation data. This assumption needs further

study, but if true, greater benefits from distributed

models would be expected for shorter lead times that

are close to the response time of a basin. For example,

analysis of several isolated storms in the Blue River

indicates an average time between the end of rainfall

and peak streamflow of about 9 h and an average time

between the rainfall peak and the streamflow peak of

about 18 h. Forecasts in this range of lead times could

benefit without using any forecast precipitation.

5. Recommendations

The analyses in this paper addressed the following

questions: Can distributed models exhibit simulation

performance comparable to or better than existing

lumped models used in the NWS? Are there

differences in relative model performance when

different distributed models are applied to different

basins? Does calibration improve the performance of

distributed models? The results also help to formulate

useful questions that merit further investigation. For

example: Why does one particular model perform

relatively well in one basin but not as well in another

basin? Because the widely varying structural com-

ponents in participating models (e.g. different rain-

fall–runoff algorithms, routing algorithms, and model

element sizes) have interacting and compensating

effects, it is difficult to infer reasons for differences in

model performance. More controlled studies in which

only one model component is changed at a time will

be required to answer questions related to causation.

Much work lies ahead to gain a clearer and deeper

understanding of the results presented in this paper.

Several other papers in this issue already begin to

examine the underlying reasons for our results. Scale

and uncertainty issues figure to be critical research

topics that will require further study. An important

potential benefit of using distributed models is the

ability to produce simulations at small, ungauged

locations. However, given uncertainty in available

inputs, the spatial and temporal scales where explicit

distributed modeling can provide the most useful

products (and benefits relative to lumped modeling) is

not clear. Forecasters will need guidance to define the

confidence they should have in forecasts at various

modeling scales. This is true for both lumped and

distributed models. A recent NWS initiative to

produce probabilistic quantitative precipitation esti-

mates (PQPE) should help support this type of effort.

Information about precipitation uncertainty can be

incorporated into hydrologic forecasts through the use

of ensemble simulations (e.g. Carpenter and Georga-

kakos, 2004).

Concurrent with future studies to improve our

understanding, efforts are also needed to develop

software that can test these techniques in an

operational forecasting environment. All results pre-

sented in this paper were produced in an off-line

simulation mode. Design for the forecasting environ-

ment raises a number of scientific and software issues

that were not addressed directly in this paper. Issues

such as model run-times, ease of use, and ease of

parameterization are very important for successful

operational implementation. Related issues to con-

sider are capabilities to ingest both observed and

forecast precipitation, update model states, and

produce ensemble forecasts as necessary. A project

to create and test an operational version of the OHD

distributed model is currently in progress.

Finally, several ideas for future intercomparison

work (e.g. DMIP Phase II) were suggested at the

August 2002 DMIP workshop. These suggestions

included defining a community-wide distributed

modeling system, separating the comparisons of
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routing and rainfall runoff techniques, using synthetic

simulations to complement work with real world data,

doing more uncertainty analysis (e.g. ensemble

simulations), looking in more detail at differences in

model structures to improve our understanding of

cause and effect, assessing the impact of model

element size in a more systematic manner, identifying

additional basins where scale issues can be studied

effectively and where other processes such as snow

modeling can be investigated, using additional

sources of observed data for model verification (e.g.

soil moisture), and using a longer verification period.

Appendix A

DMIP Participants: Jeff Arnold1, Christina Ban-

daragoda2, Allyson Bingeman3, Rafael Bras4,
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Mauro Diluzio8, Konstantine Georgakakos6, Anubhav

Gaur7, Jianzhong Guo11, Hoshin Gupta9, Terri

Hogue9, Valeri Ivanov4, Newsha Khodatalab9, Li

Lan10, Xu Liang11, Dag Lohmann12, Ken Mitchell12,

Christa Peters-Lidard14, Erasmo Rodriguez3, Frank

Seglenieks3, Eylon Shamir9, David Tarboton2, Baxter

Vieux7, Enrique Vivoni4, and Ross Woods13

1. USDA-Agricultural Research Service, Temple,

Texas

2. Utah State University, Logan, Utah

3. University of Waterloo, Ontario, Canada

4. Massachusetts Institute of Technology, Cam-

bridge, Massachusetts

5. DHI Water and Environment, Horsholm, Den-

mark

6. Hydrologic Research Center, San Diego, Cali-

fornia

7. University of Oklahoma, Norman, Oklahoma

8. TAES-Blacklands Research Center, Temple,

Texas

9. University of Arizona, Tucson, Arizona

10. Wuhan University, Wuhan, China

11. University of California at Berkeley, Berkeley,

California

12. NOAA/NCEP, Camp Springs, Maryland

13. National Institute of Water and Atmospheric

Research, New Zealand

14. Hydrologic Sciences Branch, NASA Goddard

Space Flight Center, Greenbelt, Maryland, USA

References

Anderson, E., (2003). Calibration of Conceptual Hydrologic Models

for Use in River Forecasting (copy available on request from:

Hydrology Laboratory, Office of Hydrologic Development,

NOAA/National Weather Service, (1325) East-West Highway,

Silver Spring, MD 20910).

Andersen, J., Refsgaard, J.C., Jensen, H.J., 2001. Distributed

hydrological modeling of the senegal river basin-model

construction and validation. Journal of Hydrology 247,

200–214.

Bandaragoda, C., Tarboton, D., Woods, R., 2004. Application of

topmodel in the distributed model intercomparison Project.

Journal of Hydrology, 298(1–4), 178–201.

Boyle, D.P., Gupta, H.V., Sorooshian, S., Koren, V., Zhang, Z.,

Smith, M., 2001. Toward Improved Streamflow Forecasts:

Value of Semi-distributed Modeling. Water Resources Research

37(11), 2749–2759.

Burnash, R.J., 1995. The NWS river forecast system - catchment

modeling. In: Singh, V.P., (Ed.), Computer Models of

Watershed Hydrology, Water Resources Publications, Littleton,

CO, pp. 311–366.

Burnash, R.J., Ferral, R.L., McGuire, R.A., 1973. A Generalized

Streamflow Simulation System Conceptual Modeling for

Digital Computers, US Department of Commerce National

Weather Service and State of California Department of Water.

Butts, M.B., Payne, J.T., Kristensen, M., Madsen, H., 2004. An

Evaluation of the impact of model structure and complexity on

hydrologic modelling uncertainty for streamflow prediction.

Journal of Hydrology, 298(1–4), 242–266.

Carpenter, T.M., Georgakakos, K.P., 2004. Impacts of parametric

and radar rainfall uncertainty on the ensemble streamflow

simulations of a distributed hydrologic model. Journal of

Hydrology, 298(1–4), 202–221.

Carpenter, T.M., Georgakakos, K.P., Spersflagea, J.A., 2001. On the

parametric and NEXRAD-radar sensitivities of a distributed

hydrologic model suitable for operational use. Journal of

Hydrology 253, 169–193.

Christiaens, K., Feyen, J., 2002. Use of sensitivity and uncertainty

measures in distributed hydrological modeling with an appli-

cation to the MIKE SHE model. Water Resources Research

38(9), 1169.

Clark, C.O., 1945. Storage and the unit hydrograph. Transactions of

the American Society of Civil Engineers 110, 1419–1446.

Di Luzio, M., Arnold, J., 2004, 298(1–4), 136–154.

Finnerty, B.D., Smith, M.B., Seo, D.J., Koren, V., Moglen, G.E.,

1997. Space-time scale sensitivity of the Sacramento model to

radar-gage precipitation inputs. Journal of Hydrology 203,

21–38.

Fulton, R.A., Breidenbach, J.P., Seo, D.J., Miller, D.A., O’Bannon,

T., 1998. The WSR-88D rainfall algorithm. Weather and

Forecasting 13, 377–395.

S. Reed et al. / Journal of Hydrology 298 (2004) 27–6058



Guo, J., Liang, X., Leung, L.R., 2004. Impacts of different

precipitation data sources on water budget simulated by

the VIC-3L hydrological model. Journal of Hydrology,

298(1–4), 311–334.

Gupta, H.V., Sorooshian, S., Hogue, T.S., Boyle, D.P., 2003. In:

Duan, Q., Gupta, H.V., Sorooshian, S., Rousseau, A., Turcotte,

R. (Eds.), Advances in Automatic Calibration of Watershed

Models, Calibration of Watershed Models, Water Science and

Application 6, American Geophysical Union, pp. 9–28.

Havno, K., Madsen, M.N., Dorge, J., 1995. Mike 11—A

Generalized River Modelling Package. In: Singh, V.P., (Ed.),

Computer Models of Watershed Hydrology, Water Resources

Publications, Colorado, USA, pp. 733–782.

Ivanov, V.Y., Vivoni, E.R., Bras, R.L., Entekhabi, D., 2004.

Preserving high-resolution surface and rainfall data in oper-

ational-scale basin hydrology: a fully-distributed physically-

based approach. Journal of Hydrology, 298(1–4), 80–111.

Johnson, D., Smith, M., Koren, V., Finnerty, B., 1999. Comparing

mean areal precipitation estimates from NEXRAD and rain

gauge networks. Journal of Hydrologic Engneering 4(2),

117–124.

Khodatalab, N., Gupta, H., Wagener, T., Sorooshian, S., 2004.

Calibration of a semi-distributed hydrologic model for stream-

flow estimation along a river system. Journal of Hydrology

298(1–4), 112–135.

Koren, V, Schaake, J., Duan, Q., Smith, M., Cong, S., September

(1998). PET Upgrades to NWSRFS—Project Plan, HRL

Internal Report, (copy available on request from: Hydrology

Laboratory, Office of Hydrologic Development, NOAA/

National Weather Service, 1325 East-West Highway, Silver

Spring, MD 20910).

Koren, V.I., Finnerty, B.D., Schaake, J.C., Smith, M.B., Seo, D.J.,

Duan, Q.Y., 1999. Scale dependencies of hydrologic models to

spatial variability of precipitation. Journal of Hydrology 217,

285–302.

Koren, V., Smith, M., Duan, Q., 2003. Use of a priori parameter

estimates in the derivation of spatially consistent parameter sets

of rainfall–runoff models. In: Duan, Q., Sorooshian, S., Gupta,

H., Rosseau, A., Turcotte, R. (Eds.), Calibration of Watershed

Models, AGU Water Science and Applications Series.

Koren, V., Reed, S., Smith, M., Zhang, Z., Seo, D.J., 2004.

Hydrology Laboratory Research Modeling System (HL-RMS)

of the US National Weather Service. Journal. of Hydrology 291,

297–318.

Kouwen, N., Garland, G., 1989. Resolution considerations in using

radar rainfall data for flood forecasting. Canadian Journal of

Civil Engineering 16, 279–289.

Kouwen, N., Soulis, E.D., Pietroniro, A., Donald, J., Harrington,

R.A., 1993. Grouped Response units for distributed hydrologic

modelling. Journal of Water Resources Planning and Manage-

ment 119(3), 289–305.

Leavesley, G.H., Hay, L.E., Viger, R.J., Markstrom, S.L., 2003. Use

of a priori parameter-estimation methods to constrain cali-

bration of distributed-parameter models. In: Duan, Q., Sor-

ooshian, S., Gupta, H., Rosseau, A., Turcotte, R. (Eds.),

Calibration of Watershed Models, AGU Water Science and

Applications Series.

Liang, X., Xie, Z., 2001. A new surface runoff parameterization

with subgrid-scale soil heterogeneity for land surface models.

Advances in Water Resources 24, 1173–1193.

Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., 1994. A

simple hydrologically based model of land surface water and

energy fluxes for general circulation models. Journal of

Geophysical Research 99(D7), 14,415–14,428.

Madsen, H., 2003. Parameter estimation in distributed hydrological

catchment modelling using automatic calibration with multiple

objectives. Advances in Water Resources 26, 205–216.

McCuen, R.H., Snyder, W.M., 1975. A proposed index for

comparing hydrographs. Water Resources Research 11(6),

1021–1024.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through

conceptual models part I— a discussion of principles. Journal of

Hydrology 10, 282–290.

Neitsch, S.L., Arnold, J.G, Kiniry, J.R., Williams, J.R., King, K.W.,

2000. Soil and Water Assessment Tool Theoretical Documen-

tation, Version 2000, Texas Water Resources Institute (TWRI),

Report TR-191, College Station, TX, 506pp.

Refsgaard, J.C., Knudsen, J., 1996. Operational validation and

intercomparison of different types of hydrological models.

Water Resources Research 32(7), 2189–2202.

Senarath, S.U.S., Ogden, F.L., Downer, C.W., Sharif, H.O., 2000.

On the calibration and verification of two-dimensional,

distributed, Hortonian, continuous watershed models. Water

Resources Research 36(6), 1510–1595.

Seo, D.-J., Breidenbach, J.P., 2002. Real-time correction of

spatially nonuniform bias in radar rainfall using rain gage

measurements. J. Hydrometeorology 3, 93–111.

Seo, D.-J., Breidenbach, J.P., Johnson, E.R., 1999. Real-time

estimation of mean field bias in radar rainfall data. Journal of

Hydrology, 223, 131–147.

Seo, D.-J., Breidenbach, J.P., Fulton, R.A., Miller, D.A., O’Bannon,

T., 2000. Real-time adjustment of range-dependent biases in

WSR-88D rainfall data due to nonuniform vertical profile of

reflectivity. Journal of Hydrometeorology 1(3), 222–240.

Smith, M.B., Koren, V., Johnson, D., Finnerty, B.D., Seo, D.-J.,

1999. Distributed Modeling: Phase 1 Results, NOAA Technical

Report NWS 44, National Weather Service Hydrology Labora-

tory, 210 pp. Copies available upon request.

Smith, M.B., Laurine, D., Koren, V., Reed, S., Zhang, Z., 2003.

Hydrologic model calibration in the National Weather Service.

In: Duan, Q., Sorooshian, S., Gupta, H., Rosseau, A., Turcotte,

R. (Eds.), Calibration of Watershed Models, AGU Water

Science and Applications Series.

Smith, M.B., Koren, V.I., Zhang, Z., Reed, S.M., Pan, J.-J., Moreda,

F., Kuzmin, V., 2004a. Runoff response to spatial variability in

precipitation: an analysis of observed data. Journal of Hydrology

298(1–4), 267–286.

Smith, M.B., Seo, D.-J., Koren, V.I., Reed, S., Zhang, Z., Duan,

Q.-Y., Cong, S., Moreda, F., Anderson, R., 2004b. The

Distributed Model Intercomparison Project (DMIP): Motivation

and Experiment Design. Journal of Hydrology, 298(1–4), 4–26.

Sweeney, T.L., 1992. Modernized Areal Flash Flood Guidance,

NOAA Technical Memorandum NWS Hydro 44, Silver

Spring, MD.

S. Reed et al. / Journal of Hydrology 298 (2004) 27–60 59



Vieux, B.E., 2001. Distributed Hydrologic Modeling Using GIS,

Water Science and Technology Series, vol. 38. Kluwer,

Norwell, MA, 293 pp. ISBN 0-7923-7002-3.

Vieux, B.E., Moreda, F., 2003. Ordered Physics-Based Parameter

Adjustment of a Distributed Model. In: Duan, Q., Sorooshian, S.,

Gupta, H., Rosseau, A., Turcotte, R. (Eds.), Calibration of

Watershed Models, AGU Water Science and Applications Series.

Wang, D., Smith, M.B., Zhang, Z., Reed, S., Koren, V., 2000.

Statistical comparison of mean areal precipitation estimates

from WSR-88D, operational and historical gage networks,

15th Conference on Hydrology, AMS, January 9–14, Long

Beach, CA.

Young, C.B., Bradley, A.A., Krajewski, W.F., Kruger, A., 2000.

Evaluating NEXRAD Multisensor precipitation estimates for

operational hydrologic forecasting. Journal of Hydrometeoro-

logy 1, 241–254.

Zhang, Z., Koren, V., Smith, M., Reed, S., Wang, D., 2004. Use of

next generation weather radar data and basin disaggregation to

improve continuous hydrograph simulations. Journal of Hydro-

logic Engneering 9(2), 103–115.

S. Reed et al. / Journal of Hydrology 298 (2004) 27–6060


	Overall distributed model intercomparison project results
	Introduction
	Methods
	Participant models and submissions
	Lumped model
	Events selected

	Results and discussion
	Overall Statistics
	Event statistics
	Event improvement statistics
	Additional analysis for interior points

	Conclusions
	Recommendations
	References


