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1. Introduction

Globally, urbanization has led to the expansion of impervious surfaces, which typically increases the magnitude and spatio-
temporal variability of land surface temperature (LST). A range of factors contributes to the spatial heterogeneity of LST in cities
(Lazzarini et al., 2015; Li et al., 2017; Peng et al., 2018). For example, the heterogeneous replacement of natural land covers with
buildings, road pavements and other materials significantly alters the surface energy balance (Arnfield, 2003; Chow et al., 2014;
Myint et al., 2015; Yang et al., 2017; Templeton et al., 2018). Unfortunately, the traditional means to characterize the urban heat
island effect and its associated hazards through ground-based air temperature data is dependent on having a large number of climatic
stations (Aina et al., 2017), which are lacking in many cities, in particular for developing countries such as México. Thus, urban heat
hazards need to be identified through other mapping platforms.

Thermal remote sensing products present new opportunities to monitor LST in a spatially-distributed manner (Lo et al., 1997;
Chen et al., 2006; Xiang et al., 2017; De Faria Peres et al., 2018). For instance, satellite-based LST measurements have been used to
quantify the effect of land cover variations on thermal conditions (Jenerette et al., 2016; Wang et al., 2016; Azevedo et al., 2016;
Ranagalage et al., 2017; Li et al., 2018), including studies conducted in México (García-Cueto et al., 2007; Cui and De Foy, 2012). As
a result, it is now possible to relate LST to the properties of the built environment and the socioeconomic characteristics that vary
spatially in a city. For instance, prior work in Phoenix, Arizona (Chow et al., 2012), has revealed strong linkages between LST,
vegetation cover and income that can inform heat mitigation strategies.

In this study, satellite-based LST imagery from LandSat 8 is used to quantify urban temperatures in Hermosillo, México. Despite
having a high incidence of heat-related mortalities (Díaz-Caravantes et al., 2014; Martínez-Austria and Bandala, 2017), there have
been no prior efforts to quantify urban temperatures through satellite data and link these to socioeconomic indicators of heat
vulnerability. To do this, we introduce the use of time stability (or persistence) analysis for LST, a technique shown to be effective in
identifying above- and below-average regions in a map (Vachaud et al., 1985). Outcomes of the time stability analysis are used to
indicate heat exposure, while a series of socioeconomic factors are used to identify the vulnerability of different social sectors to
urban heat through a spatial clustering technique. The resulting heat risk map for Hermosillo is an effective planning tool for
developing heat mitigation strategies, including the placement of green infrastructure, as well as an aid to communication campaigns
during summer heat waves.
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2. Study area

The study area is the city of Hermosillo, capital of Sonora, in northwest México (Fig. 1), with a population of 884,273 habitants
(Instituto Nacional de Estadística Geografía e Informática (INEGI), 2015). The city center is located at 29°04′37″ N and 110°57′10″ W
at an elevation of 211m above sea level. Most of the city has flat terrain with a slight slope towards the southwest. According to the
Köppen classification, Hermosillo has a dry desert climate with hot temperatures, BWh. Annual mean temperature is 24.9 °C, while
annual maximums vary between 42 and 49.5 °C, with a positive trend of 0.03 °C/year obtained over the period of 1966 to 2016
(Navarro-Estupiñan et al., 2018). Mean annual rainfall is 356mm/year, with 70% occurring during the summer as a result of the
North American monsoon (Gebremichael et al., 2007; Tang et al., 2012).

Despite the hot, arid conditions, Hermosillo has the highest population growth rate in Sonora at 3% per year. Urban growth is
regulated by the Instituto Municipal de Planeación (IMPLAN) which conducts urban land cover classifications and is responsible for
providing society with information related to urban hazards, including excessive heat. Fig. 1 presents the land cover classification for
the year 2014 from (Instituto Municipal de Planeación (IMPLAN), 2014), but using the city boundary for 2010 to align the efforts
with the most recent census (Instituto Nacional de Estadística Geografía e Informática (INEGI), 2010). An analysis of urban land cover
in Hermosillo (Table 1) reveals a high degree of built surfaces and excessively low amounts of green spaces. Indeed, a much higher
percent of impervious cover (60%) is present in Hermosillo as compared to reported values in the arid cities of Phoenix (45%) and Las
Vegas (40%) by (Myint et al., 2015). Furthermore, green spaces account for only 3.5 m2 of area per inhabitant in Hermosillo, well
below the (World Health Organization, 2010) recommendation of at least 9 m2 per person to ameliorate excessive heat, among other
physical, mental and wellness health goals.

Fig. 1. (a) Location of Hermosillo in Sonora, México. (b) Official land use map (INEGI, 2015) at a 30-m resolution using the 2010 city limits. Box
shows sub-area for analyses.
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3. Data and methods

3.1. Satellite-based land surface temperature

The Thermal Infrared Sensor (TIRS) on LandSat 8 was used to obtain daytime LST over its period of availability from March 2013
to December 2017, which overlaps with the period of the urban land cover classification (year 2014). In total, 79 images were used
and 31 were eliminated due to cloud cover. TIRS collects images every 16 days with an overpass time around 11:00 a.m. local time.
Two thermal bands (bands 10 and 11) at 100-m resolution are used to retrieve LST but these are resampled to a finer resolution of 30-
m to match the multispectral bands applied in the retrieval (Irons et al., 2012). Each image was first converted to at-sensor spectral
radiance (Lλ in Wm−2sr−1μm−1) as:

= +L M Q A ,λ L cal L (1)

where ML and AL are band-specific multiplicative and additive rescaling factors, and Qcal is the quantized and calibrated standard
product pixel values. Lλ was converted to at-sensor brightness temperature, T (°K), following (Zanter, 2016) as:
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where K1 and K2 are the thermal conversion constants for each band (Wm−2sr−1μm−1). Subsequently, T was converted to LST using
the procedure of (Weng et al., 2004) as:

=
+ ( )

LST T

W e1 ln( )Ts
hc (3)

where W is the wavelength of the emitted radiance, h is Planck's constant (6.626× 10−34 Js), s is the Boltzmann constant
(1.38×10−23 JK−1), c is the velocity of light (2.998× 108ms−1), and e is land surface emissivity obtained from the proportion of
vegetation (Pv) as:
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following (Carlson and Ripley, 1997), where NDVI is the Normalized Difference Vegetation Index derived from LandSat 8 (USGS,
2014), and NDVImin and NDVImax are the minimum and maximum values obtained over the study area at 30-m resolution.

3.2. Time stability analysis

Spatiotemporal variations of LST were analyzed to identify locations that behave differently than the spatially-averaged condi-
tions in Hermosillo during the study period (i.e., hotter or colder than average). While time stability analysis has been used to
characterize soil moisture variability (Vachaud et al., 1985; Jacobs et al., 2004; Vivoni et al., 2008), the methodology has not been
applied to LST, to our knowledge. The procedure depends on the spatial mean of LST (LSTmean) for each image in the study area that
was defined by the city boundary obtained from (Instituto Nacional de Estadística Geografía e Informática (INEGI), 2010) for the year

Table 1
Hermosillo land use classification, including area (in km2 and percentage), impervious cover percent in each class, and statistical properties
(maximum, minimum, and mean) of RMSE within each class.

Code Description Area (km2) Area (%) Imp. (%) RMSE

Max. Min. Mean

H3 High density housing 23.83 14.33 75.00 0.12 0.01 0.03
H2 Medium density housing 18.70 11.25 72.00 0.12 0.01 0.03
H1 Low density housing 7.24 4.36 58.00 0.12 0.01 0.04
IRA High risk industry 1.35 0.81 34.50 0.08 0.02 0.04
IRM Medium risk industry 8.10 4.87 33.00 0.24 0.02 0.07
IRB Low risk industry 0.95 0.57 34.50 0.30 0.02 0.06
RHC Housing reserve 15.99 9.62 3.00 0.14 0.01 0.05
RIC Industrial reserve 2.10 1.26 3.00 0.13 0.02 0.07
RG Government reserve 2.04 1.23 3.00 0.18 0.01 0.05
ZDCS Control development zone 0.07 0.04 7.00 0.09 0.03 0.07
AVD Green area or sports facilities 3.10 1.87 3.00 0.17 0.01 0.04
MX Mixed 29.99 18.04 37.00 0.26 0.01 0.04
CU Urban center 0.47 0.28 80.00 0.08 0.02 0.03
ST Streets 40.89 24.60 100.00 0.18 0.01 0.03
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2010:
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where n is the total number of pixels and LSTi are values of each pixel i. Differences between each pixel and LSTmean are referred to as
the Mean Relative Difference (MRD):
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where m is the total number of images and LSTi,j refers to the pixel values across different times m. MRD values close to zero indicate
pixels close to average conditions (LSTmean), while positive or negative values imply above- or below-average locations, relative to
LSTmean. The Variance of the Relative Difference (VRD):
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was used withMRD to obtain a single metric known as the Root Mean Squared Error of the Relative Difference (RMSE), (Jacobs et al.,
2004) that is able to characterize time stable sites:

= +RMSE MRD VRD( )2 0.5 (9)

Low values of RMSE indicate time stable pixels that capture spatially-averaged conditions over all time periods, while high values
indicate sites that do not track the spatial mean in a consistent fashion. In prior applications, RMSE has been a useful means of
indicating sites that are consistently above or below the spatially-averaged conditions across all time. Here, these locations represent
sites that are hotter or colder than the city averaged conditions.

3.3. Socioeconomic data analysis

Census information from (Instituto Nacional de Estadística Geografía e Informática (INEGI), 2010) at the tract (or Área Geoes-
tadística Básica, AGEB) level was used to relate socioeconomic variables to the heat exposure map (Table 2). Five indicators linked to
extreme heat deaths (gender, age, marital status, education, and health) were selected based on (Díaz-Caravantes et al., 2014), while
three housing indicators were used to determine access to air conditioning, a popular heat mitigation strategy (Reid et al., 2009;
Chuang and Gober, 2015). Additionally, two indicators related to infrastructure were included based on their positive relation to
daytime LST, as noted by (Jenerette et al., 2016; Mathew et al., 2016). Census information was divided into five quantiles. If a
particular variable belonged to the worst quantile, a value of 1 was assigned, otherwise a value of 0 was used. This worst quantile
method was applied to rank and classify the vulnerability indicators in each AGEB (Smith et al., 2003). Subsequently, the ten
indicators were summed and a map was obtained for the degree of heat vulnerability, classified from high (value of 10) to low (value
of zero). A heat risk map was then constructed by multiplying the degree of heat vulnerability with the heat exposure obtained from
the time stability analysis (RMSE), as suggested by (Cardona et al., 2012a; Cardona et al., 2012b). This procedure allowed creating a
single heat risk map indicating unfavorable conditions from the exposure to LST and the socioeconomic vulnerability to heat hazards.
A heat risk map can provide valuable information to government officials to develop heat preparedness plans and heat mitigation
strategies (Loughnan et al., 2012; Hu et al., 2017).

Table 2
Selected vulnerability indicators.

Indicators by category

ID
Social

1 Gender (men)
2 Age (18–65 years)
3 Marital status (single, widower or divorced)
4 Age and Education (≥ 15 years old without elementary school)
5 Health (without health public service)
Housing
6 Without electricity
7 Without fridge and washing machine
8 Without internet access, phone and cellphone
Infrastructure
9 Impervious area
10 Streets
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3.4. Hot spot analysis

The “hot spot” term is defined as a region whose value is higher relative to its surroundings (Isobe et al., 2015). The Getis-Ord
local clustering method was applied to find statistically significant “hot” and “cold” spots in the heat risk map (Getis and Ord, 1992).
Gi* is a Z-score, with large values implying a more intense clustering of high values:
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where Gi* (d) is the local G statistic for a feature i within a distance (d), and Wij (d) is the spatial weight for the target-neighbor i and j
pair (Peeters et al., 2015). (Ord and Getis, 1995) developed a z-transformed form of Gi⁎ to improve the statistical testing. The
statistical significance and degree of clustering is evaluated according to the confidence level and on the Z-scores. If Z(Gi

⁎) has a
positive value and significant, it means that the pixel has a relatively high frequency of being a hot spot area. Otherwise, if Z(Gi

⁎) has
a negative value and significant, the pixel has a high frequency of being a cold spot area.

4. Results and discussion

4.1. Spatiotemporal variations of LST and NDVI

Prior to conducting spatiotemporal analyses, we compared LST values obtained from LandSat 8 with observed air temperatures
over the study period. While indirect, this comparison provides a context for the retrieval performance relative to other studies. A
single weather station located in the center of the urban area (29.0814°N, 110.9706°W) was available for this comparison
(“Hermosillo Observatorio”). We found a strong linear correlation (y=0.9453×+6.5851, r=0.74) between LST and air tem-
perature at the LandSat 8 local passing time (11:00 a.m.). The correlation at this site could be affected by atmospheric turbulence
since the weather station is installed on the roof of a three-story building. Furthermore, the relation is expected to vary across
different types of urban land cover, depending on urban geometry, built environment material properties, and outdoor water use
(Templeton et al., 2018; Song et al., 2017). Despite these factors, the comparison at “Hermosillo Observatorio” is similar to com-
parisons reported by (García-Cueto et al., 2007; Jenerette et al., 2011) in the arid cities of Mexicali and Phoenix, respectively.

To provide context for the study period, Fig. 2 shows the temporal variations of LST (°C) and NDVI (−) obtained from LandSat 8,
along with daily rainfall (mm/day) from the “Hermosillo Observatorio”. In the case of the LST and NDVI, the spatial average in the
city of Hermosillo for the 2010 boundary is shown as a symbol, with the variations in the city captured by bars representing±1
spatial standard deviation. Higher values of NDVI and rainfall tend to occur during the summer (July to September) associated with
the North American monsoon (Xiang et al., 2014). This period is also characterized by a reduction of LST, as compared to the spring
season and early summer (May to June), due to evaporative cooling (Berg et al., 2015). As a result, an analysis of the correlation
between NDVI and LST yielded slight negative correlations (r=−0.10), which were statistically significant (p < 0.001). Moreover,
LST exhibited sensitivity to rainfall (r=−0.02) in agreement with (Haashemi et al., 2016). Although the correlation is not statis-
tically significant, there is an average LST reduction of 5.78 °C compared to the previous day without precipitation. Note that high
LST in early summer presents the most hazards to health in Hermosillo, but that the onset of summer rains can effectively reduce
these risks.

Fig. 2. Temporal variations of spatially-averaged LST and NDVI over Hermosillo (symbols) and its variation (error bars are± 1 standard deviation)
with rainfall obtained from the weather station “Hermosillo Observatorio” during the study period.
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Fig. 3 presents the spatial distribution of the temporal averages and standard deviations of LST and NDVI, obtained at 100-m and
30-m resolution over all available image dates, respectively. Note that there are areas in Hermosillo characterized by higher LST
towards the city periphery, especially along the eastern and western areas. In contrast, central areas in the city have lower LST values.
This effect has been reported in other desert cities (Lazzarini et al., 2015; Hafner and Kidder, 1999). This can be explained con-
sidering that impervious surfaces tend to respond more slowly to temperature changes in the morning than the desert surroundings
(Steeneveld et al., 2011). In addition, shaded areas produced by buildings leads to LST reductions (Tang et al., 2017). Regions with
high LST tend to experience large temporal changes in LST, whereas cooler areas have lower variability. Spatial differences in NDVI
are also noted, with higher values associated with peripheral areas, urban green spaces and agriculture (especially in the southwest
area). In contrast, streets and mixed to high density urban areas show a clear reduction in NDVI. As expected, the temporal variations
in NDVI are lower than those of LST, with only those areas having changes in land cover exhibiting appreciable standard deviations.
One of the many factors explaining the spatial variations in temporal average LST and NDVI are elevation differences, notably due to

Fig. 3. Spatial distributions of LST and NDVI statistics obtained during the study period: temporal average (a) and temporal standard deviation (b)
of LST, and temporal average (c) and temporal standard deviation (d) of NDVI.
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small mountains found in the northern and central areas of the city. We found that LST decreases with elevation (r=−0.19 and
p < 0.001), while NDVI increases slightly with altitude (r=0.03 and p < 0.001). In addition, the land cover type is expected to
control LST and NDVI, as explored next.

4.2. Effects of urban land cover type

Fig. 4 presents the variation of LST and NDVI with the urban land cover types (see Table 1). Each bar depicts the averaged
conditions across all pixels classified in the particular type over the study period, while the error bars depict the± 1 standard
deviation among these pixels over all images. In terms of LST, industrial areas (IRA) exhibited the highest average, which were
substantially greater than those across all other types. This is in agreement with (Alpuche et al., 2014) who found industrial areas in
Baltimore to exhibit the highest LST values. Small differences in LST between different housing densities are likely due to lower
amounts of NDVI for the medium and high density areas. It is worth noting that high density housing (H3) has increased more rapidly
in the last decade in Hermosillo (Hernández and Velásquez, 2014; Mathew et al., 2017). Unexpectedly, green areas or sports facilities
(AVD) were found to exhibit similar LST to housing types, due to the barren conditions and low use of irrigation to support vege-
tation. It is well known that vegetated areas with high NDVI can help reduce extreme heat (Kroeger et al., 2018; Liu and Zhang,
2011). This is found in Hermosillo by comparing the LST and NDVI for the urban land cover types. For housings (H1, H2, H3) and
reserves (RHC, RIC, RG), a negative correlation (r=−0.21 and p < 0.001) was obtained between LST and NDVI such that vege-
tation in these areas reduced land surface temperatures. In contrast, we found a positive correlation among LST and NDVI for
industrial areas (IRA, IRM, IRB; r=0.34 and p < 0.001) and mixed areas (MX; r=0.22 and p < 0.001). This indicates that ele-
ments of the built environment and construction materials increase LST despite the occurrence of high NDVI (Jenerette et al., 2016;
Harlan et al., 2014). However, the lowest NDVI values were obtained in the urban center (CU) with the high percentage of impervious

Fig. 4. Average (bars) and ± 1 standard deviation (error bars) of (a) LST and (b) NDVI within each land use type during the study period (see
Table 1 for code definitions).
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surfaces and where vegetation is absent. Clearly, there are factors other than NDVI that help to control the LST patterns across the
multitude of urban land cover types in Hermosillo. Next, we explore which areas have consistently warmer or cooler LST values.

4.3. Time stability analysis of land surface temperature

Fig. 5 presents the outcomes of the time stability analysis for LST variations in Hermosillo. We selected the 2010 city boundary as
the domain to calculate LSTmean (as shown in Fig. 2 as a time series) as this was the most recent census data available. It is expected
that land cover changes occurred during the study period (2013–2017) such that the classifications of 2014 would be altered. These
changes, for instance in terms of urban expansion or crop rotations, would have an impact on LST that are reflected in the time
stability analysis. Note that we present spatial distributions of the two factors of the analysis, MRD and VRD, that together form the
RMSE metric. Recall that MRD values close to zero are those pixels that track LSTmean, while positive or negative values are above or
below the spatial average. Fig. 5a illustrates spatial clustering of MRD in an identical pattern as LSTmean (Fig. 3a), with large portions
of the city having values close to zero. As described earlier, the city center has areas with negative MRD (cooler than average), while
areas in the city periphery linked to fallow agriculture or undeveloped land have positive MRD (warmer than average). In contrast,
VRD values show spatial clustering which are not identical to the standard deviation of LST (Fig. 3b), but instead reflect whether a
location changes in its relation to the spatial average conditions (larger VRD) or remains similar over time (smaller VRD). Those areas
in the city periphery with positive MRD also exhibit high VRD, indicating that they experienced changes over time, possibly linked to

Fig. 5. Spatial distributions of (a) mean relative difference (MRD), (b) variance of the relative difference (VRD) and (c) root mean square error of the
relative difference (RMSE) of land surface temperature during the study period.
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alterations in land cover. The city center exhibits small values of VRD in part due to its stable land cover over the study period, but
also as a reflection of tracking well the spatial average.

As an integrated measure, RMSE is useful for interpreting the spatial patterns of LST, as shown in Fig. 5c, and computed for urban
land cover types in Table 1 (minimum, maximum and mean values for all pixels in each classification). Low RMSE values indicate
areas with time stable pixels, defined as those areas that track well the spatially-averaged conditions in Hermosillo over all time.
These pixels are located mainly in land use types such as residential housing, urban centers, streets, mixed uses and green areas
(Table 1, RMSE ≤ 0.04). High RMSE values are those sites that do not track well the spatially-averaged conditions in Hermosillo over
time, either due to variations in magnitude (as indicated by MRD) or in temporal changes (as indicated by VRD). It is important to
note that high RMSE does not implicate a particular directionality of LST such that these areas can be warmer or cooler than overall
conditions in the city. At the scale of the city, Fig. 5c and Table 1 show that industrial zones and reserve areas in the periphery of the
city exhibit high RMSE (Table 1, RMSE≥ 0.05). Nevertheless, other patterns emerge in RMSE that are unaffected directly by land
cover type. For instance, a significant, but small correlation (r=0.01, p < 0.001) was found between RMSE and elevation, sug-
gesting that higher altitude areas have a higher RMSE.

Fig. 6 provides additional information on this effect by showing details in the sub-area box depicted in Fig. 1 in terms of MRD,
VRD, and RMSE. Note that large areas with high RMSE tend to be associated with higher elevation zones and urban parks that are
irrigated. The elevation effect is two-fold in that: (1) higher altitude provide refugia to heat and thus do not track well the overall

Fig. 6. As in Fig. 5, but for sub-area depicted in Fig. 1.
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conditions in the city, and (2) small mountains in Hermosillo provide substantial shading to nearby areas, in particular to locations
northeast of each mountain. Some small urban parks, however, are not effective in significantly changing the conditions as compared
to the overall city, likely due to the lack of outdoor water use to support vegetation and the abundant use of synthetic grass. Thus,
several factors affect exposure to heat, as compared to the averaged conditions in the city, which will be combined next with the
vulnerability to heat to identify areas of heat risks.

4.4. Vulnerability and heat risk mapping

The worst quantile method was used to spatially characterize the ten socioeconomic variables and create a vulnerability map as
shown in Fig. 7a. We also excluded areas that are uninhabited such as housing, industrial and government reserves and those sites
with known development restrictions. Zones of high vulnerability were identified near the city center associated with CU, H1, H3,
and MX urban land cover classes (see Table 3). Some areas within the city center that are classified as low vulnerability are occupied
by government offices or designated as uninhabited. A large area of medium to high vulnerability extends from the north to the south

Fig. 7. Spatial distributions of (a) vulnerability map from the worst quantile method of the socioeconomic indicators and (b) hot and cold spot areas
with 99%, 95% and 90% confidence that combine vulnerability to heat and exposure to heat through RMSE.

Table 3
Vulnerability and hot/cold spot analysis using the 2010 city boundary. Metrics include the average vulnerability score (0 is low and 10 is high
vulnerability) and the percentage of area that is classified as a cold or hot spot above the 99% confidence interval.

Code Description Vulnerability Cold spot > 99% (%) Hot spot > 99% (%)

H3 High density housing 2.22 14.68 7.65
H2 Medium density housing 3.10 37.06 9.45
H1 Low density housing 3.16 39.84 3.97
IRA High risk industry 2.07 0.00 56.18
IRM Medium risk industry 3.03 15.96 58.69
IRB Low risk industry 3.11 19.98 51.06
RHC Housing reserve 2.31 3.49 5.82
RIC Industrial reserve 3.24 0.07 3.15
RG Government reserve 3.23 4.14 11.42
ZDCS Control development zone 3.00 3.13 0.00
AVD Green area or sports facilities 2.82 13.63 36.15
MX Mixed 3.07 14.76 36.16
CU Urban center 4.16 65.26 1.92
ST Streets 2.83 20.85 16.77
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of the city where there are mainly H1, H2 and MX urban classes. Towards the periphery of the city in northern, western and southern
areas, large swaths of low vulnerability zones are present which are related to H2, H3, MX, and RHC urban classes. Thus, there are
regions in the periphery that despite having dense urban housing are classified as having low vulnerability based on the evaluated
indicators (Table 2). Overall, the percentages of population of Hermosillo in 2010 can be classified as living in high (16.6%), medium
(13.9%) and low (70.4%) vulnerability zones.

Fig. 7b presents the heat risk map derived for Hermosillo based on the vulnerability indicators and the RMSE in the form of the
distribution of hot spots and cold spots with 90%, 95% and 99% confidence intervals, as well as non-significant areas. To aid in the
interpretation, Table 3 summarizes the percentage of area of each urban land cover type that is classified as a hot and cold spot at the
99% confidence interval. The largest hot spot areas are located in the older neighborhoods of the city located in the eastern and
central areas, as well as in recent and high density housing developments in the north and south. Overall, hot spots account for 20.5%
of the area for the city boundary of 2010. These hot spots occupy large areal fractions of the medium risk industry and mixed use
areas (Table 3). Those classes categorized as housing (H1, H2, H3, CU, and MX) have significant hot spots occupying from 10 to 24%
of the total area. Hot spots indicate areas where mitigation strategies such as the implementation of green infrastructure could reduce
the level of heat exposure and where prevention campaigns could be targeted. In contrast, cold spots are located in the periphery of
the city where vulnerability to heat tend to be low, accounting for 42.0% of the total area in Hermosillo. Some contrasts between hot
and cold spots are worth noting from Table 3. For instance, green area or sports facilities (AVD) and high density housing (H3) have
two to five times more cold spots as compared to hot spots, while significantly more area in the urban center is a hot spot as compared
to a cold spot.

A closer look at the sub-area box near the urban center is shown in Fig. 8 to illustrate the spatial distribution of vulnerability and
hot and cold spots relative to a high-resolution image. A few old neighborhoods at the lower end of the income scale in Hermosillo
exhibit high vulnerability and are hot spots. These are found next to small mountains that have a low vulnerability and are generally
not significant spots. Medium vulnerability is also found in housing areas in the urban center, where these fall within the insignificant
areas of the hot spot analysis. Interestingly, there seems to be little correlation between the location of green areas designated by the
city and the occurrence of hot or cold spots, except some sites in the southern part of the sub-area where irrigated parks are cold
spots, suggesting the utility of green infrastructure to mitigate heat in Hermosillo.

Note that mortality was not included as one of the social variables of the analysis because it is reported at the city scale by the
epidemiology office of the state. Social exclusion is a condition related to excessive mortality. Hence, it is possible that a synergistic
effect between thermal vulnerability and frailty occurs.

4.5. Sensitivity analyses

To understand the sensitivity of the heat risk map to the underlying assumptions in the adopted methods, we performed two
different types of analyses. In the first approach, the sensitivity to each of the socioeconomic variables was assessed by withholding
one indicator at a time from the evaluation. The socioeconomic variables only dictate the vulnerability to heat and propagate to the
heat risk map without affecting the estimation of RMSE. As a sensitivity metric, we determined the differences in hot spot areas as
compared to that obtained with the analysis of all indicators. The most sensitive indicators were found to be “Age and Education
(>= 15 years old without elementary school)” with a 2.0% difference in hot spot area, followed by “Health (without health public
service)” at 1.6% difference and “Age (18-65 years)” at 1.1% difference. These indicators are related to heat exposure through
outdoor activities such labor in construction and agricultural activities, consistent with the findings of Harlan et al. (2014), and
provide guidance as to potential heat mitigation efforts aimed at populations with these characteristics. Overall, however, the
sensitivity to any individual indicator was low, indicating the robustness of the overall heat risk map to the particular selection of
individual socioeconomic factors.

In the second approach, we determined the sensitivity of the heat risk map to the selection of the city boundary polygon. Note the
city area is a critical factor for determining the RMSE from LST imagery as all locations are referenced to spatial average, LSTmean.
This was performed by using the official city polygons over different periods spanning from 1950 to 2010 (Instituto Municipal de
Planeación (IMPLAN), 2014). Fig. 9 (inset) shows an expansion of about 13-fold in the Hermosillo area over this period, with the
largest increase from 1990 to 2000, and the change in LSTmean with the size of the city boundary. Accompanying this expansion were
significant modifications in land cover which affected the occurrence of urban classes. For example, Table 4 presents the vulnerability
and areal percentage of cold (> 99%) and hot (> 99%) spots for the 1950 city polygon concentrated around the urban center (within
the sub-area box of Fig. 1). Using the 1950 polygon, the CU land cover class has only 2.33% of its area as a hot spot, as compared to
15.76% for the 2010 polygon. This indicates that the smaller area for spatially-averaging decreases LSTmean (Fig. 9 inset) and that
deviations from this quantity are less common in the CU class for the 1950 case. Similarly, for the green areas and sports facilities
(AVD), the use of the 1950 polygon leads to a smaller percentage of cold spots (20.69%) as compared to the 2010 polygon (28.23%).
The vulnerability of CU and AVD remained fairly similar since these classes have a large presence near the city center included in the
1950 polygon. Thus, in contrast to the low sensitivity found for socioeconomic indicators, we identify that the selection of the
averaging area is a critical step in determining a heat risk map using this method.

Since the area of the city has not varied significantly since 2000 (Fig. 9 inset), we conclude that the results of the heat risk
mapping are generally valid over the period 2000 to 2017. Note that the results of the sensitivity analysis do not imply that we have
captured the temporal variation of heat risk between 1950 and 2010. Instead, this should be viewed as the sensitivity of the heat risk
map to the spatial averaging of the LST imagery obtained from LandSat 8 (2013–2017). As the boundary polygon grows, the dis-
tributions of cold and hot spots change, in accordance with the new estimate of LSTmean (Fig. 9 inset). The growth of the polygon
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incorporates hotter regions along the periphery of the city, thus leading to a rising LSTmean. This is illustrated in Fig. 9 using two
examples: (1) cold spot area percentage within the green areas and sports facilities (AVD), and (2) hot spot area percentage within the
urban center (CU). As the boundary polygon grows, the AVD class is a smaller percentage of the total area and its percentage of cold
spots decreases from 1950 to 1970. The cold spots then increase from 1980 to 2010 despite the LSTmean rising. Overall, this implies
that the effect of green areas in ameliorating urban heat is more effective as more of the city area is considered. This is contrasted by
the gradual increase in the hot spot area percentage within the CU urban class located near the historical center. As the city polygon
grows, CU becomes a much smaller percentage of the total area, which is experiencing an increase in LSTmean. A growth in the hot
spot percentage within CU, despite the rising LSTmean, indicates that those areas added over time have sufficient variability in LST
such that the high density urban center effectively has comparatively higher heat risk.

Fig. 8. As in Fig. 7, but for sub-area depicted in Fig. 1.
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5. Conclusions

The city of Hermosillo has the second highest number of mortalities linked to heat in México (Díaz-Caravantes et al., 2014).
However, there are no current studies to link the spatial distribution of exposure to heat and the socioeconomic vulnerability to heat
in the population. In this study, we develop the first heat rissk map for Hermosillo by combining land surface temperature imagery
from satellite remote sensing with census data using two techniques, namely time stability and hot spot analyses. The methods are
generalizable to other cities confronting heat hazards, for instance Phoenix, Arizona (Chow et al., 2012) or Mexicali, Baja California
(García-Cueto et al., 2007), based on available government records and thermal remote sensing datasets. Furthermore, the resulting
heat risk map is a useful tool for urban planners in the city of Hermosillo who have responsibilities linked to emergency preparedness
during heat waves and infrastructure planning to ameliorate urban heat. Indeed, interactions with IMPLAN have yielded a strong
interest in using the heat risk map (G. Peñuñurí, personal communication). Results from this study reveal:

(1) Substantial spatial variability is present in LST within the city of Hermosillo, but a few factors, including NDVI, elevation and
urban land cover type, help to explain the identified patterns. The temporal variability of LST is dictated in large part by the lack
of or occurrence of rainfall prior to and during the North American monsoon. We found contrasting relationships between NDVI
and LST depending on the urban land cover type. We also some unexpected outcomes such as a high LST in green areas and sports
facilities, comparable to housing areas, since these are not irrigated to support vegetation.

(2) Through the time stability analysis, we identified locations in Hermosillo with high RMSE that exhibit above- or below-average
LST conditions relative to the overall city. Large areas with high RMSE tend to be associated with industrial zones, reserve areas
in the periphery of the city, higher elevation zones, and urban parks that are irrigated, whereas other land cover types tend to

Fig. 9. Variation of urban center classified as a hot spot and green areas classified as a cold spot above the 99% confidence interval based on city
polygons defined from 1950 to 2010. Inset shows the total area of the city (km2) and LSTmean (°C) as a function of the city polygons defined from
1950 to 2010. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
As Table 3, but using the 1950 city boundary.

Code Description Vulnerabilty Cold spot > 99% (%) Hot spot > 99% (%)

H3 High density housing 4.25 22.68 7.03
H2 Medium density housing 3.00 0.00 0.00
H1 Low density housing 4.06 32.28 1.92
IRA High risk industry 0.00 0.00 0.00
IRM Medium risk industry 0.00 0.00 0.00
IRB Low risk industry 2.00 0.00 0.00
RHC Housing reserve 2.00 0.00 0.00
RIC Industrial reserve 0.00 0.00 0.00
RG Government reserve 1.00 0.00 33.33
ZDCS Control development zone 0.00 0.00 0.00
AVD Green area or sports facilities 3.02 14.01 11.67
MX Mixed 3.86 8.60 22.13
CU Urban center 3.89 17.76 4.49
ST Streets 4.01 13.48 19.15
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follow the spatially-averaged conditions in the city well (low RMSE). Local conditions such as shadowing effects from nearby
mountains or outdoor water use can play important roles in determining urban heat in Hermosillo.

(3) Heat exposure maps obtained from RMSE were combined with socioeconomic indicators of vulnerability to heat to derive hot and
cold spots within the city. This planning tool can be used to identify locations where heat mitigation strategies (hot spots) would
yield important benefits or sites that already serve as heat refugia (cold spots). We tested the sensitivity of the selection of the
socioeconomic indicators finding that the outcomes were robust. Nevertheless, the heat risk map was identified as sensitive to the
city polygon used as the averaging domain, though the current map appears valid from 2000 to 2017.

While this study is based on LandSat 8 TIRS imagery over a limited period of availability (2013–2017), the results obtained here
are considered to be robust for emergency preparedness and infrastructure planning activities in Hermosillo. Indeed, earlier versions
of the work have been used directly by IMPLAN to inform citizens of Hermosillo, through local news media and web resources, about
areas to avoid during summer heat waves (C. Espinoza, personal communication). The methodology presented in this work is readily
adapted to novel sources of high-resolution LST imagery; to other arid and semiarid cities in Mexico and the United States; and as a
basis for decision support systems that combine heat risks with other measures of environmental vulnerability. In particular, the heat
risk map affords the opportunity for targeted investments and/or activities that can have a large impact on reducing heat-related
health issues and mortality.
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