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Abstract

A data-based resampling experiment is performed to estimate sampling errors of area-averaged soil moisture estimates due to spatial sampling
by ground-based sensors. The data consists of high-resolution soil moisture images derived from the Polarimetric Scanning Radiometer (PSR/CX)
sensor flown on an aircraft as part of the summer field experiment (SMEX04 — Soil Moisture Experiment 2004) in the monsoon region of
Sonora, Mexico. The sampling characteristics are investigated by accounting for random networks and evenly spaced networks. For random
network designs, we develop a simple model that can be used to estimate the sampling uncertainty (expressed as standard deviation of sampling
error as a percentage of the areal mean soil moisture) as a function of the number of sensors, mean soil moisture content and averaging area. This
model is valid for five or more sensors. The model should prove useful to those wishing to assess the area-averaged performance of a soil moisture
network. Furthermore, the method of analysis is applicable to other study regions (Oklahoma, Iowa, Alabama, Georgia, and Arizona) where soil
moisture fields have been mapped at high resolution using airborne passive microwave remote sensors.
© 2007 Published by Elsevier Inc.
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1. Introduction

Daily global soil moisture products available from existing
earth observing satellites will enhance the characterization of the
near-surface soil moisture state (Jacobs et al., 2004). A common
goal of satellite soil moisture estimation techniques is to produce
grid-averaged soil moisture values that are as close to the truth as
possible. Two quantitative aspects of satellite soil moisture could
be distinguished: estimation and validation. Estimation deals
with developing retrieval algorithms, while validation deals with
quantifying the error in the soil moisture estimates by
comparison with the “ground truth” (i.e. independent and more
accurate soil moisture estimates). Reliable error estimates are
crucial to improve the retrieval algorithm, to attach an
appropriate degree of confidence for users of the product and
to allow optimal data assimilation techniques.
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The conventional “ground truth” data for validating satellite
soil moisture products comes from networks of ground-based
observational sensors (Cosh et al., 2004; Jacobs et al., 2004;
Yoo, 2001). It is well known that the ground-based sensors have
their own errors, but the assumption is that these errors
(averaged over the satellite footprint) are significantly smaller
than the errors in satellite-based products. The major problem
arising in this approach is that of a mismatch in scale between
satellite output grids (10–50 km) and ground-based sensor
points (∼5 cm). In order to compare the satellite outputs and the
ground-sensor observations, the latter is usually transformed to
the scale of the satellite footprint. The transformation could be
done by simply averaging the ground-based sensor observations
within a satellite grid or by using geostatistical interpolation
techniques. This transformation introduces spatial sampling
error due to the inability of existing ground-based networks to
capture the sub-grid scale variability.

The objective of this paper is to quantify the spatial sampling
error in area-averaged near-surface soil moisture estimates
obtained from a network of ground-based sensors having
different distributions in space. The objective is accomplished
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by simulating sampling experiments over high-resolution soil
moisture fields to estimate the sampling errors. The high-
resolution (800 m×800 m) soil moisture images were derived
from the Polarimetric Scanning Radiometer (PSR/CX) sen-
sor flown on an aircraft as part of the summer field experiment
(SMEX04 — Soil Moisture Experiment 2004) in Sonora,
Mexico. The study site is a semiarid region characterized
by complex terrain and highly heterogeneous vegetation
cover, which exhibits dramatic and fast response to rainfall
forcing at and after the onset of the North American monsoon.
There were six complete PSR/CX images covering an area
of 50 km×90 km taken in early August during the North
American monsoon period over Sonora, but we are using only
a sub-domain of 50 km×75 km in our study.

First, we quantify the sampling error for a variety of number
of sensors and soil moisture spatial statistics. To make the
assessment valid for random networks (independent of specific
networks), we use a resampling experiment to create an
ensemble of 500 networks for each number of sensors. We
develop a model that can be used to estimate the sampling
uncertainty as a function of averaging area, number of sensors,
and areal mean soil moisture. Second, we repeat the same
analysis for evenly spaced sensors, as a function of the number
of sensors and soil moisture condition.

The PSR/CX-derived soil moisture maps are subject to
errors arising from different sources. The PSR/CX soil
moisture maps have been compared against field measure-
ments in both Vivoni et al. (2008-this issue) and Bindlish et al.
(2008-this issue). Vivoni et al. (2008-this issue) found that
ground and remotely-sensed soil moisture estimates exhibit
similar spatial variations with changes in the mean water
content, but there are clear differences in actual soil moisture
values from the two estimates. Even though the PSR/CX maps
may not represent the true soil moisture fields, we need only to
assume that they represent realistic or plausible space-time
patterns characterized by realistic probability distribution.
Fig. 1. The study area, a 50-km by 75-km box in northern Sonora, and its topogr
partitioned the area into six regions (identified by the numbers), each 25.6 km by 2
Because sampling errors depend on relative differences rather
than absolute values, we argue that the resampling approach
we describe herein offers a new insight into the statistical
structure of error distribution. This work differs from that of
Yoo (2001) in that his analysis assumes that the soil moisture
fields are (weakly) second-order stationary. Our results of
second order moment statistics reveal that such assumptions
may not be valid for this region.

2. Study area and its characteristics

The SMEX04 experiment was a large-scale soil moisture
experiment conducted in cooperation with the National Aero-
nautic and Space Administration (NASA), the U.S. Department
of Agriculture—Agricultural Research Service (USDA-ARS),
and other federal agencies and universities. SMEX04 was
conducted in two regional study sites (50 km×75 km) established
in Sonora (Mexico) and Arizona (USA). Our study focuses on the
Sonora site. A comprehensive description of the experiment is
available at http://hydrolab.arsusda.gov/smex04.

Fig. 1 presents our study area, a 50-km by 75-km box, and its
topographic characteristics derived from a 90-m digital
elevation model (DEM). The area is bounded by 30.50°N to
the north, 29.83°N to the south, 110.75°W to the west, and
110.23°W to the east. Note the north–south trending mountain
ranges and river valleys in the study area which form part of the
Sierra Madre Occidental. Two major ephemeral (seasonal)
rivers flow north–south through the region: Río San Miguel
(west) and Río Sonora (east), with the former draining into the
latter south of the domain. The topographic distribution is
characterized by a high mean elevation and a large elevation
range, which are primarily due to the effects of channel incision
(Coblentz & Riitters 2004).

We partitioned the study area into six regions, each 25.6 km by
25.6 km, which is approximately equivalent to the spatial scale of
the soil moisture products currently available from the AMSR-E
aphic characteristics derived from a 90-m digital elevation model (DEM). We
5.6 km.
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Table 1
Land cover types and their areal coverage (%) in each region (SIUE-IMADES,
1998)

Land cover type Regions

1 2 3 4 5 6

Irrigated agriculture 3 3 3 2 0 0
Oak savanna/forest 9 16 6 30 19 44
Subtropical shrubland 75 8 0 54 58 0
Desert shrubland and mesquite forest 11 61 71 13 15 33
Grassland 2 12 17 0 6 23
Riparian forest 0 0 0 1 2 0
Bare soil 0 0 3 0 0 0

Table 2
Soil texture classes and their areal coverage (%) in each region (INIFAP, 2001)

Soil texture class Regions

1 2 3 4 5 6

Coarse 69 52 10 86 85 33
Medium 31 46 77 14 13 66
Fine 0 2 13 0 2 1
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(Advanced Microwave Scanning Radiometer) instrument on
board the Aqua satellite (Njoku et al., 2003). All regions except
one (region 3) contain watershed divides indicating large relief
variability within each region. The smallest relief range (850 m to
1750 m) is observed for region 3, and the largest for region 4
(600 m to 2030 m). Vivoni et al. (2007) showed that there is a
strong control exerted by topography on the spatial and temporal
variability in soil moisture, with distinct landscape regions
experiencing different hydrologic regimes.

Table 1 presents an inventory of the land cover type which
shows that plant communities vary considerably and include
desert shrub, mesquite forest, subtropical shrub and oak
savanna. The downstream regions (1 and 2) are dominated by
subtropical shrublands, known as Sinaloan Thornscrub (Brown,
1994). This ecosystem primarily consists of thorny trees and
shrubs, such as Palo Verde (Cercidume sonorae) and Palo
Blanco (Piscidia mollis), which leaf-on and become green
during rainy periods. Region 6 (characterized by the highest
elevations) is dominated by oak savanna; this ecosystem is part
of the Madrean evergreen woodland and consists of individual
trees, typically Emory Oak (Quercus emoryi), interspersed with
grasses and cacti (Brown, 1994). The remaining regions are
dominated by either subtropical shrublands or desert shrublands
and mesquite forest. Soils include a wide range of textures with
large regions of both coarse and medium textures. Table 2 gives
broad soil texture class characteristics in terms of coarse,
medium and fine. The soils are dominantly characterized by
either coarse or medium textures, with coarse soils becoming
more dominant in the southern portion of the study region.

The study area is a semiarid region, which lies in the
periphery of the core of the North American monsoon region,
and receives 40–65% of its annual rainfall from the monsoon
(Douglas et al., 1993). Gebremichael et al. (2007) investigated in
detail the spatial and temporal variability of summer 2004
rainfall in the study area. They reported that (i) the two-month
(July–August) summer 2004 rainfall varied from 130 mm to
260 mm depending on the location, (ii) the spatial correlation of
rainfall between two locations decays exponentially with
increasing the separation distance, and becomes insignificant
when the distance reaches ∼15 km, and (iii) in contrast to the
upstream (northern section of the study area), the downstream
section is characterized by strong convective systems that peak
late diurnally and have smaller rainfall totals.
3. PSR/CX soil moisture datasets and their statistical
properties

The Polarimetric Scanning Radiometer (PSR/CX), an
airborne imaging radiometer working at both C- and X-band
frequencies operated by the NOAA Environmental Technology
Laboratory (Piepmeier & Gasiewski, 2001), was flown aboard
the NASA P-3 aircraft for the purpose of obtaining polarimetric
microwave emission. At 7300 m above sea level, the flights
were mostly operated during the morning hours to avoid
development of convective systems, which can hinder an
aircraft operation. Typically, 1 h was required to complete the
study area. The PSR/CX measurements supplied six complete
maps of the region (5, 9, 10, 12, 13, and 14 August 2004). The
approximate flight times were roughly 15:15–16:00 local hours
on 5 August 2004, and 9:20–10:25 on the other days. Bindlish
et al. (2008—this issue) provides details regarding the
algorithm used to obtain soil moisture estimates from the
PSR/CX 7.32H GHz brightness temperature measurements in a
regularly spaced grid at nominal resolution of 800 m. Fig. 2
displays the images of the PSR/CX-derived volumetric soil
moisture content (%vsm) over the study area. The driest surface
condition has a 2%vsm soil moisture content. The land surfaces
are characterized by a wide range of moisture conditions
varying from the wettest (5 August 2004) to the driest (14
August 2004). The soil moisture fields generally exhibit spatial
variability, the magnitude of which varies regionally and
temporally. Below, we offer the statistical descriptions of
these fields for each ∼25-km by ∼25-km regional box.

Fig. 3 shows the relationship between the coefficient of
variation (CV) and the mean of the volumetric soil moisture
content, for each region, derived from the six soil moisture
images shown in Fig. 2. The regional soil moisture content
ranges from 2% to 20%vsm. Region 1 (a downstream region)
registers the highest regional mean (20%vsm), whereas region 3
(an upstream region) registers the lowest (2%vsm). This
suggests that satellite soil moisture algorithms need to have
the capability to resolve soil moisture variability ranging from
2%vsm to 20%vsm, so that they could be useful in semiarid
monsoon regions. Fig. 3 also reveals that there is a relationship
between CVand areal mean soil moisture content: CV decreases
with increasing mean soil moisture for values N2.7%vsm. The
decay of relative variability with increasing wetness is consistent
with the findings of earlier studies (Bell et al., 1980; Charpentier
& Groffman, 1992; Famiglietti et al., 1999; Owe et al., 1982).
The implication is that large rainfall events leading to soil
moisture increases result in smaller sub-grid scale variability.
For land surfaces with areal mean soil moisture exceeding 10%
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Fig. 2. PSR/CX-derived volumetric near-surface soil moisture content (%vsm) over the study area. The area is divided into six regions numbered as shown on the left
top panel.

Fig. 3. The coefficient of variation (CV) as a function of the mean of volumetric
soil moisture content during the SMEX04 experiment, derived from six PSR/CX
images shown in Fig. 2.
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vsm, the CV is smaller than 55%, while it can reach up to 100%
when the areal mean soil moisture is less than 10%vsm.

In the above analysis, we used the normalized standard
deviation statistic to measure the sub-grid (or inter-footprint)
scale variability; that is the variability among 800-m PSR pixels
within a 25-km by 25-km regional box. The standard deviation
measures the variability of the majority (for example 68% of the
population clustered around the mean for normally distributed
random variables) of the PSR/CX footprints. We used another
statistic called the mean relative difference to examine how each
of the PSR/CX footprints (0.8 km×0.8 km) differs from the
regional (25.6 km×25.6 km) mean. The mean relative
difference (η̄ i,j) is defined as

Pgi;j ¼
1
nt

X
t¼1

nt hi;j;t � P
hj;t

P
hj;t

; ð1Þ

where

P
hj;t ¼ 1

nj;t

X
i¼1

nj;t
hi;j;t; ð2Þ

where, t=1, 2,…, nt (number of dates), j=1, 2,…, nc (number of
regions), and i=1, 2,…, nj,t (number of footprints within region
j at time t). The mean relative difference at a footprint identifies
whether that location is wetter (i.e. η̄ i,jN0) or drier (i.e. η̄ i,jb0)
than the region on average. Fig. 4 depicts the spatial map of the
mean relative difference (η̄ i,j) in percentages. The minimum
value of the mean relative difference is −80%, and the
maximum value reaches 370%, indicating that the spatial



Fig. 4. (a) Mean relative difference (%) of volumetric soil moisture content,
computed from six PSR/CX images.

Fig. 5. Probabilities of exceedence of volumetric soil moisture obtained from six
spatial PSR/CX images for each region.
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variability of soil moisture is skewed to the right. This suggests
that the regional mean strongly underestimates the wettest areas
than it overestimates the driest areas, consistent with the
findings of Mohanty and Skaggs (2001) and Jacobs et al. (2004)
for regions of the Little Washita watershed in Oklahoma and the
Walnut Creek watershed in Iowa, respectively.

Fig. 5 exhibits the spatial soil moisture distribution function
in the form of its probabilities of exceedence, for each region and
day. The plots are in log-linear scales. Region 1 was the wettest
on August 5th, and continued drying with each day. Region 2
became the wettest on August 9th, due to a strong storm event
that occurred on August 8th. Then on August 10th, the region
dried down, with soil moisture in some spots sharply dropping
from 50%vsm to 15%vsm in one day. Wet and dry conditions
alternated daily until August 14th. Region 3 shows similar
temporal fluctuation with region 1. Region 4 was the wettest on
August 5th, got drier on August 9th; and showed no appreciable
change until August 14th. Regions 5 and 6 are similar: they
became the wettest on August 9th, dried down on August 10th,
showed no appreciable change until August 13th, and dried
down onAugust 14th. Overall results show that the soil moisture
fields show strong day-to-day variability, and the nature and
trend of temporal fluctuations vary from region to region.

To identify any spatial structure in the soil moisture fields, we
estimated the spatial correlation function using a two-step
procedure. First, we obtained the inter-footprint correlation
coefficient estimate as a function of the separation distance, for
each realization (region and day). To perform this, we initially
grouped several pairs of footprints which are approximately at a
prefixed distance, h, apart. We then applied the standard
(Pearson's) formula for correlation coefficient estimation. This
approach implies that the mean, covariance and variances are
estimated from a single realization. This implies that we have
assumed the soil moisture process is ergodic, meaning the
individual available realization manifests in the domain of
definition of the same probability distribution of all the
theoretically possible realizations (Baachi & Kottegoda, 1995).
Another implicit assumption is isotropy (correlation depends
only on the separation distance and not on the direction). In a
topographically dominated landscape, the assumption of
isotropy might not be realistic. Second, we fitted a parametric
model to each set of the inter-footprint correlation coefficients.
We chose the following modified-exponential formula for this
modeling:

qgðhÞ ¼ c exp � h
d0

� �p� �
; ð3Þ

where h is the separation distance between two footprints, ρg is
the fitted correlation estimate, and c, d0, and p are functional
parameters. We defined the correlation distance (d) as the



Fig. 6. Spatial correlation functions obtained from the PSR/CX-derived volumetric soil moisture contents for each date and region. Solid lines (with filled circles)
represent (unconditional) correlation functions obtained using all available footprints, whereas dotted lines (with open circles) represent conditional correlation
functions obtained using footprints that have soil moisture values exceeding 2%vsm. D and d refer to the conditional and unconditional correlation distances,
respectively.
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distance at which the correlation is [exp(1)]−1 or approximately
0.3679, consistent with the definition of the e-folding distance.
We solved for the correlation distance from Eq. (3) as:

d ¼ d0 �ln
1

cexpð1Þ
� �� �1=p

: ð4Þ

In Fig. 6, we present the estimated correlation coefficients
between sets of pairs of footprints as a function of the separation
distance, as well as the correlation distance d. In all cases,
correlations decrease with increasing separation distance, as
expected. The correlation distance for each day ranges from 3 to
10 km, 3 to 8 km, 1 to 8 km, 3 to 10 km, 7 to 19 km, and 7 to
16 km, for regions 1 through 6, respectively. This high daily
fluctuation in the correlation distance suggests that considering
the same correlation function for the entire set of events (as is
often done in geostatistical techniques) may be unsatisfactory
for this area. The case of the minimum correlation distance
(∼1 km) occurs for region 3 on August 13th. Inspection of
Fig. 5 reveals that the driest soil moisture field occurs for region
3 on August 12th and 13th. Examination of Fig. 2 further shows
that region 3 on August 13th consists of small isolated wet areas
amidst large regions of dry soil. The case of the largest
correlation distance (18 km) is observed for region 5 on August
10th. Inspection of Fig. 4 reveals that this case takes place as the
region is drying down uniformly. The second largest correlation
distance (16 km) is observed on August 12th for region 6, which
is also on a dry-down phase.

As pointed out by Berndtsson (1987), the correlation
estimate is affected by the inclusion or exclusion of dry areas



Fig. 7. Sampling uncertainty (S, Eq. (8)) as a function of the randomly located
ground-based sensor network density for each region and date. Each panel
shows the results for each region, and the different curves in within each panel
correspond to the different PSR/CX images. The sampling uncertainty values
are all valid for the 25.6-km×25.6-km grid boxes.
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in the analysis. We repeated the above exercise but for areas
with soil moisture content exceeding 2%vsm (in statistics
language “conditioned on areas with greater than 2%vsm”). The
resulting conditional correlation coefficients and correlation
distances (D) are superimposed in Fig. 6. The conditional
correlation coefficients are always equal to or less than the
unconditional correlation coefficients, as expected. The differ-
ence between the two correlation coefficients varies from 0 to
0.4, higher values suggesting larger areas with soil moisture less
than 2%vsm. As a result, the conditional correlation distances
are also equal to or less than the unconditional values. The
differences between the conditional and unconditional correla-
tion distances vary from 0 to 6.4 km, larger values for areas
dominated by moisture values less than 2%vsm. The condi-
tional correlation distances vary from 2 to 10 km, 2 to 4 km, ∼0
to 7 km, 3 to 4 km, 4 to 13 km, 4 to 14 km, for regions 1 through
6, respectively. The conditional correlation distances also
exhibit high daily fluctuation, suggesting that the assumption
of second-order stationarity in time (or considering the same
correlation for the entire set of summer events) may not be
appropriate for this area.

4. Sampling uncertainty analysis

Our starting point is the PSR/CX soil moisture content maps
available at a resolution of 800 m×800 m covering each region,
an area of 25.6 km×25.6 km. We assume that these maps are
possible realizations of the true soil moisture random field.
Using all the footprints in a given region j at time t results in the
regional mean θ̄ j,t (see Eq. (2)). Sampling a smaller number of
footprints leads to a sampling error. Let θ̂j,t be the sample mean
derived from the small number of footprints using

ĥj;t ¼ 1
nj;t

X
i¼1

nj;t
hi;j;tdi;j;t; ð5Þ

where the Kronecker delta function, δ(i), is one if the footprint
is selected and zero otherwise.

The sampling error is defined as

ej;t ¼ h
w
j;t �

P
hj;t: ð6Þ

The sampling uncertainty of θ̂j,t as an estimate of θ̄j,t can be
characterized by standard deviation of εj,t,

rðej;tÞ ¼
P
e2i;j

� �1=2
: ð7Þ

It is customary to express the sampling uncertainty in a
dimensionless form as

S ¼ rðej;tÞ
P
hj;t

100%: ð8Þ

We are interested in how sampling uncertainty (S) varies as
a function of the number of sensors, sensor network
configurations (random, stratified and currently deployed),
and wetness condition. To address this, we simulated several
realizations of the sampling error (εj,t) via resampling
experiments on the PSR/CX soil moisture fields, as discussed
below.

To perform the resampling experiment for randomly selected
sensor networks, we followed the following procedure:

i. Generate two random numbers x and y (1≤x≤32;
1≤y≤32) from a uniform distribution to decide on the
sensor location. Note that there are 32×32 PSR/CX pixels
in a given 25.6-km by 25.6-km region. To locate m
sensors we need to generate 2 m random numbers. We
carefully selected randomly uniform networks (i.e. we did
not consider clustered networks as this would require
case-dependent solutions). Each sensor is assumed to
represent the PSR/CX footprint.

ii. Select m PSR/CX soil moisture data at the sensor
locations.

iii. Calculate the sample mean soil moisture content by
averaging the selected m soil moisture data as per Eq. (5).

iv. Calculate the sampling error as per Eq. (6) by taking the
difference between the sample mean obtained in step (iii)
and the regional population mean value obtained from Eq.
(2).

v. Repeat steps (i)−(iv) 500 times.
vi. Repeat steps (i)−(v) with different number of sensors m.
vii. Repeat steps (i)–(vi) with each image over each region.

The 500 realizations for each PSR/CX soil moisture image,
each region and each number of sensors will enable us to
calculate the corresponding sampling uncertainty.

To perform the resampling experiment for evenly spaced
sensor networks, we followed a similar procedure with the
exception that here the sampling locations are specified by the
evenly spaced sensors network (see Fig. 10) and not by random
sampling.



Fig. 9. Sampling uncertainty as a function of the averaging area, obtained from
simulation experiments on the PSR/CX image dated 5 August, for three different
numbers of sensors.
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5. Simulation results: random ground-based sensor networks

In Fig. 7, we show the sampling uncertainty (S, Eq. (8))
results as a function of randomly located number of sensors,
for each region and soil moisture condition as obtained from
the PSR/CX image. The sampling uncertainty values are all
valid for 25.6-km×25.6-km grid boxes that represent AMSR-
E footprints. The sampling uncertainty decreases rapidly when
the number of sensors increases until a threshold number is
reached, beyond which the sampling uncertainty converges
asymptotically. An exception occurs in region 3 when small
number of sensors (b5) is used. For this range (1 to 5 sensors),
the sampling uncertainty increases with increasing number of
sensors. This unusual behavior in region 3 is caused by the
fact that the region is characterized by vastly large dry areas,
and hence any sampling from small number of sensors will
most likely result in an estimate that exhibits little variation
from one realization to another, leading to unusually small
sampling uncertainty values. Generally, 10 to 50 sensors in
each region are needed to bring the sampling uncertainty
within 5% in all cases. The sampling uncertainty for each
number of sensors varies over a range of values depending on
the soil moisture condition. This range is relatively wide for
small number of sensors, and narrows down with increasing
number of sensors.

In Fig. 8, we show the sampling uncertainty as a function of
the mean soil moisture content, for three quantities of sensors
(2, 10 and 100). The sampling uncertainty and mean soil
moisture values are all for 25.6-km×25.6-km grid boxes. For
each sample size, there are a total of 36 pairs of sampling
uncertainty and mean soil moisture content resulting from six
regions and six PSR/CX images per region. Results show that
the sampling uncertainty decreases with increasing wetness, for
mean soil moisture content exceeding 3.2%vsm. However, the
rate of decay depends on the number of sensors: the decay is
faster for smaller number of sensors than for larger number of
sensors. For land surfaces with moisture content less than 3.2%
vsm, the sampling uncertainty increases with increasing
Fig. 8. Sampling uncertainty as a function of the mean soil moisture content, for
three different numbers of sensors (2, 10 and 100). The sampling uncertainties
and mean soil moisture values are all for 25.6-km×25.6-km grid boxes.
wetness, which could be attributed to the fact that sampling of
soil moisture in largely dry areas underestimates the areal mean
value but with smaller sampling uncertainty (i.e. the estimate
changes little from one realization to another).

Our purpose is to develop a simple model for estimating
temporal sampling uncertainty from easily available data
(large-scale mean soil moisture value available from satellites),
and hence the focus on mean soil moisture content. Having said
this, we have also looked at the sub-grid scale variability in
terms of the correlation function. Our results discussed in
Section 3 show that the correlation function changes with soil
moisture condition, and so there is no a single ‘climatological
correlation function” that can be used for sampling uncertainty
estimation.

Let us now look at the dependence of the sampling uncer-
tainty on soil moisture averaging areas. We selected 39 dif-
ferent averaging areas so that the largest area corresponds to
the dimensions of 50.4 km×50.4 km (i.e. 63×63 PSR/CX
pixels, recall that each PSR/CX pixel has a dimension of
0.8 km×0.8 km) and the smallest area encompasses a dimen-
sion of 8.8 km×8.8 km (i.e. 11×11 PSR/CX pixels). These
spatial scales (ranging from 50 km to 8 km) are relevant for
future missions (e.g., SMOS).

In Fig. 9, we show the dependence of the sampling
uncertainty on the soil moisture averaging areas, obtained
from our simulation on the PSR/CX image dated 5 August. The
plot is on a log–log scale in which straight lines are
characteristics of scaling functions. Fig. 9 reveals that the
sampling uncertainty obeys scaling law with respect to the
averaging area, and it increases with increasing averaging area.
We also found similar simulation results based on the other
PSR/CX images.

In the preceding paragraphs, we have shown that the
sampling uncertainty results are scalable with respect to the
number of sensors (N), mean soil moisture content (θ̄ ) and
averaging area (A). Wewill now develop a simple model that can
be used to estimate sampling uncertainty for any combination of



Fig. 10. The evenly spaced networks used to study the effect of various factors
on the sampling uncertainty of soil moisture fields. The numbers of sensors
shown on the plots are 1, 4, 8, 16, 32 and 64.

Fig. 11. Sampling error in percent of mean (100εi,j / θ̄ i,j) as a function of the
number of sensors with locations corresponding to Fig. 10, for each regional
PSR/CX image. Each panel shows the results for one region, and the lines within
each panel correspond to different PSR/CX images.
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the N, θ̄ and A. The various scaling laws that our results suggest
could be written as

S ¼ f fN�a;
P
h

�b
;A�gg: ð9Þ

However, we do not know the model form f{.}. Following
Steiner et al. (2003) and Gebremichael and Krajewski (2004),
who assumed a multiplicative model for the temporal sampling
uncertainty in satellite-based rainfall estimates, we assumed the
following simple empirical form:

S ¼ aN�aPh
�b
Ag; ð10Þ

where A is in km2, θ̄ is in %vsm, S is the sampling uncertainty in
percent of mean, and parameters a, α, β and γ are obtained from
regression fit. Using simulations results from all PSR/CX images,
all regions, sample sizes ranging from 1 to 100 and averaging
areas ranging from 8.8 km×8.8 km to 50.4 km×50.4 km, we
estimated the parameters involved in Eq. (10) by multiple
regression analysis after taking the logarithms of both sides. We
found the following results: a=11.3, α=0.49, β=0.19 and
γ=0.16. The associated standard errors are negligible (b0.01).
These parameter estimates are obtained so that they minimize the
mean square difference between the fitted and actual uncertainty
estimates. We assessed the performance of the sampling
uncertainty model (i.e. Eq. (10)), by comparing its estimates to
the actual sampling uncertainty estimates. For 90% of the cases,
the estimates made by Eq. (10) fall within the range 0.80–1.20
times the actual sampling uncertainty estimates, whereas this
range narrows down to 0.91–1.06 times for 50% of the cases.
Note that the scaling exponent corresponding to the number of
sensors is about −0.50, indicating that the samples gained by
increasing the number of sensors are uncorrelated (from statistical
theory). We add the caveat that Eq. (10) fails to capture the
relationship between sampling uncertainty and number of
sensors, for small number of sensors (b5) in vastly dry regions
(see the first paragraph in this section for additional information).

6. Simulation results: evenly spaced ground-based sensor
networks

We constructed six networks (Fig. 10) to quantify the
sampling error for evenly spaced sensor networks. The
networks are composed of 1, 4, 8, 16, 32 and 64 sensors inside
each 25.6-km×25.6-km region. As discussed in Section 4,
fixing the sensor locations gives us only one realization of
sampling error (εj,t Eq. (6)) for each regional PSR/CX image at a
fixed sample size. For this reason, the results shown in this
section and the next are sampling error values (εj,t) and not
sampling uncertainties (S).

In Fig. 11, we show the sampling error in percent of mean
(i.e. 100εi,j / θ̄i,j) as a function of the number of sensors, for each
regional PSR/CX image. The dependence of the sampling error
on the number of sensors shows little intra-regional variability
and large inter-regional variability. For example in region 4, the
sampling errors are mostly negative, the absolute value of which
decreases with increasing number of sensors. In region 5, the
sampling errors are positive for small number of sensors (1 to
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4), become negative for medium number of sensors (8 to 16),
and get close to zero beyond 32 sensors. Overall, the sampling
error varies within ±70% for one sensor, and within ±10% for
32 sensors. The actual value of the estimated sampling error
depends on the region and the underlying soil moisture field.

7. PSR/CX versus ground-based sensors

The study of the sampling error using PSR/CX footprints
(800 m×800 m) may not reflect the true magnitude of the
sampling error one would encounter using ground-based sensor
observations (0.05 m×0.05 m). The PSR/CX footprint
observations exhibit less variability than the ground-based
sensors, and hence the use of PSR/CX footprints tends to
underestimate the sampling error. The sampling uncertainty
model, i.e. Eq. (10) with the estimated parameter values,
derived from the PSR/CX footprints therefore needs to be
modified to obtain results applicable for ground-based sensors:

S ¼ 11:3frN
�0:49Ph

�0:19
A0:16; ð11Þ

where fr is the correction factor that accounts for the area
discrepancy between the ground-based sensors and PSR/CX
footprints. Further study, based on dense networks of ground-
based sensors, is needed to estimate the value of fr.

According to our model (Eq. (10)), there are only two
parameters that reflect the effect of grid-box size on the sampling
uncertainty: γ (estimated to be 0.16) and a (estimated to be
11.3). γ is estimated based on a large range of grid-box sizes, and
hence it may not change significantly as one goes beyond the
range of the spatial scales used in this analysis. Having said this,
we believe that the parameter a will change when using the
ground-based sensor (instead of PSR/CX) for reasons discussed
in the preceding paragraph. We have introduced the correction
factor fr to account for this (see Eq. (11)).
8. Summary and conclusions

Satellite-based soil moisture estimation holds great promise
to enhance characterization of near-surface soil moisture state
across the globe. The usability of the products requires
validation against independent and more accurate soil moisture
estimates. Although ground-based sensors provide direct mea-
surements of soil moisture (in contrast to satellite-based sensors
that can only detect electromagnetic signals indirectly related to
soil moisture), their footprint is of the order of 5 cm×5 cm. On
the other hand, area resolution (or grid box size) of satellite-
based products could range from 10 km×10 km to 50 km×
50 km. Therefore, in order to use validation data from ground-
based sensor networks, we need to quantify the spatial sampling
error for soil moisture estimates derived from ground-based
sensor networks, as a function of number of sensors, averaging
region and the characteristics of the soil moisture field.

We investigated the sampling error in the instantaneous areal
mean soil moisture estimates by making use of six PSR/CX-
derived soil moisture images in a semiarid monsoon region of
Sonora, Mexico. Using a resampling experiment, we estimated
the sampling error as a function of ground-based sensor network
type, number of sensors, grid box size, and areal mean soil
moisture.

A key result of our analysis is that the sampling uncertainty
scales with the number of sensors, grid box size and areal mean
soil moisture. We developed a model that can be used to
estimate the sampling uncertainty. The estimated sampling
uncertainty (S, expressed as standard deviation of sampling
error as a percentage of the areal mean soil moisture) is
inversely proportional to the number of sensors and the areal
mean soil moisture but proportional to the grid box size

S ¼ 11:3frN
�0:49Ph

�0:19
A0:16:

The factor fr is introduced to account for the area discrepancy
between the PSR/CX footprints used in this study and the
ground-based sensors. Further investigation using dense
network of ground-based sensors is required to estimate fr.
This model is valid for five or more ground-based sensors. We
note that this is the first time that the sampling uncertainty
model shown above is proposed for soil moisture applications.

The main advantage of this model is that it allows calculation
of the sampling uncertainty from the coarse-grid satellite
estimates (i.e. without the knowledge of sub-grid scale
variability). We acknowledge that such a model is subject to
error, that's why we treated the model in a probabilistic
framework. Our results have shown that for 90% of the spatial
soil moisture realizations, our simple model produces sampling
uncertainty estimates that have standard errors to within ±20%.

The model mentioned above can be used to estimate the
sampling uncertainty arising from the use of ground-based
sensor network in estimating areal average soil moisture for
areas ranging from about 10 km×10 km to 50 km×50 km. The
results are therefore applicable to existing satellite-based soil
moisture products, such as the AMSR-E products. The resulting
sampling uncertainty estimates are of paramount importance for
designing new validation networks, quantifying the error in
existing validation networks and filtering out this error from the
validation of satellite estimates, and assimilating network
estimates into satellite soil moisture algorithms. Furthermore,
the method presented here is applicable to other study regions
(Oklahoma, Iowa, Alabama, Georgia, and Arizona) where soil
moisture fields have been mapped at high resolution using
airborne passive microwave remote sensors (e.g., Cosh et al.,
2004, 2005; Jackson et al., 2005; Jacobs et al., 2004; Mohanty
& Skaggs, 2001).

We note that the results of this study (e.g., the regression
parameter estimates) may not be necessarily applicable to other
regions characterized by different climatology, topography and
land surface conditions. Further study is therefore required to
assess the applicability and limitation of this sampling
uncertainty model in other regions.
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