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By John T. ~edersen,'  A. M. ASCE, John C. peters,' 
and Otto J.  elw we^,^ Members, ASCE 

The rainfall-runoff process is nonlinear and dynamic, with spatially distributed 
inputs and outputs. Because of the complexity of the runoff process and the 
absence of data with which to describe in detail the character of heterogenous 
watersheds and of spatially distributed inputs, simulation of the rainfall-runoff 
process is generally based on conceptual models. Such models contain parameters 
that must be estimated, and the models vary in complexity and in the range 
of runoff situations to which they apply. 

The runoff transform mechanism that was investigated in the study described 
herein (9) is the single linear reservoir (SLR), which is intended for application 
in small watersheds with short response times. The model parameter, K, is 
related to watershed characteristics and to the intensity of effective rainfall. 
Results of application of the SLR model with experimental data and with data 
from actual watersheds are reported. 

The single linear reservoir model transforms rainfall excess, determined outside 
of the model, to direct surface runoff as shown in Fig. 1. The SL,R model 
is based on the concept that a watershed behaves as a reservoir in which storage 
S is linearly related to outflow Q by the equation 
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The parameter K, called the storage coefficient, has the units of time, and 
is constant for a linear system. Basin storage at any time t is equal to the 
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FIG. 1 .-SLR Conceptual Model 

summation of rainfall excess minus the volume of outflow up to time t. Combining 
Eq. 1 with the hydrologic continuity equation 

yields the linear differential equation 

in which I = inflow (rainfall excess) at any time t. Integration of Eq. 3, using 
the initial condition that Q = 0 when t = 0, results in the equation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Q(t) = I(t)(l - e-'IK) - (4) 

If rainfall excess ceases at time T, after beginning of outflow, and if Q* is 
the outflow at time T,, then Eq. 3 becomes 

in which t' = t - t,. Integration of Eq. 5, subject to the condition that Q 
= Q* when t ' = 0, yields 



It can be seen that Eqs. 4 and 6 define the rising and falling limbs, respectively, 
of a hydrograph. 

For an inflow, I,  that fills the reservoir of storage, S*, instantaneously (T, 
= 0), combining Eq. 6 with Eq. 1 results in the equation 

and for a unit inflow or unit storage, the instantaneous unit hydrograph (IuH) 
is given by 

in which h(t) = the IUH ordinate. A unit hydrograph of duration At can be 
calculated by Eqs. 4 and 6 for a unit inflow I. Approximately the same result 
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FIG. 2.-Typical SLR Unit Hydrographs 

is obtained by averaging IUH ordinates At units apart, if the initial ordinate 
of the At unit hydrograph is set equal to zero as required by Eq. 4 (see Fig. 
2), and At is sufficiently small to provide reasonable definition, of the unit 
hydrograph. 

Eq. 2 can also be expressed in finite-difference form as 

in which subscripts P and 2 refer to beginning and end, respectively, of an 
interval At. Thus, combining Eq. 1 with Eq. 9 



( I I + I z )  - < Q , + Q 2 >  K -- - (Q2-  Q , )  . . . . . . . .  
2 2 At 

At 
in which C ,  = . . . . . . . . . . . . . . . . . . . . . . . . . . .  12) 

2 K + A t  

Eq. 11 requires the average inflow for the interval At. Since the excess rainfall 
hyetograph is normally in histogram form (that is, in terms of average ordinates), 
the time interval A t  is chosen to coincide with the hyetograph ordinates. Thus 
I, = I , ,  and Eq. 1 1 becomes 

Eqs. 12-14 are the "working" equations of the SLR model. 
If I, in Eq. 14 is a unit inflow with duration At, the resulting unit hydrograph 

would be essentially identical to that obtained by averaging IUH ordinates based 
on Eq. 8 and much easier to compute (6). 

The SLR model, then, can be viewed as a one-parameter unit hydrograph 
model with the special characteristic of always peaking At time units after 
the beginning of rainfall excess. This is a limitation that restricts the use of 
the model to watersheds that are relatively small and "flashy." However, many 
urban watersheds fit this classification, especially those with extensive, effective 
storm sewer systems. If a watershed is divided into subcatchments, the unit 
hydrograph limitation may be alleviated at the expense of a requirement for 
accurate definition of channel routing parameters. 

The storage coefficient, K, has been shown to be equal to time lag T,, 
defined as the time difference between centers of mass of rainfall excess and 
direct runoff (13). 

Therefore T ,  = To - T, = K . . . . . . . . . . . . . . . . . . . . . . .  (15) 

in which T, = time interval from t = 0 to centroid of inflow; and To = time 
interval from t = 0 to centroid of outflow. 

For a particular storm event on a gaged watershed, K can be estimated from 
rainfall excess and corresponding direct runoff, .provided: (1) The storms are 
relatively isolated in time; (2) they are fairly uniformly distributed over the 
watershed; and (3) they have a single, well defined peak. If the excess rainfall- 
direct runoff process was actually linear, the value of K thus determined would 
be a constant for all storms. However, the variation of K with rainfall characteris- 
tics has been established by various investigators (1 1,13,14). Other than multiple 
regression techniques that generally produce relationships limited to a specific 
geographic region, how can K be determined from measurable physical charac- 
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teristics of a watershed and characteristics of the excess rainfall hyetograph? 
Consider first the simple case of a planar surface and a constant effective 

rainfall intensity. Ref. 3 used kinematic wave theory to show that time to 
equilibrium, defined as the time required to reach steady-state conditions (inflow 
= outflow), can be expressed as 

in which t, = time to equilibrium; L = length of plane; i = effective rainfall 
intensity; and C, m = constants. 

In Ref. 10 the following equations were developed assuming turbulent flow 
conditions. Here 

in which t, = time to equilibrium, in minutes; L = length of plane, in feet; 
i = effective rainfall intensity, in inches per hour; n = Manning's roughness 
coefficient; and S = slope of planar surface, in feet per foot. 

Defining basin lag, t,,, as the time difference between 50% of excess rainfall 
(equivalent to center of mass for a uniform rainfall) and 50% of the resulting 
direct runoff volume, Overton (7) used the kinematic wave equations to derive 
the expression 

in which t, is defined by Eq. 17. Implicit in Eq. 18 is the relation 

in which S,, = storage at equilibrium; and i = constant effective rainfall intensity. 
Overton (6) developed Eq. 19 from the geometry of a conceptual equilibrium 
hydrograph (see Fig. 3). However in testing Eq. 19 on data obtained by the 
U. S. Corps of Engineers experimental program (1 8) it was found that the ratio 
of t, (calculated by Eqs. 18 and 19) to t ,  determined by Eq. 17 was about 
0.8. If S,, / i is set equal to T ,  , then 

which is consistent with the Corps data. In other words, tso is about 0.8 T L .  
The same ratio can be deduced from experimental data given in the study 
conducted by Pabst (8). Using the relationships defined by Eqs. 15 and 20, 
Eqs. 12 and 13 become, respectively 

t, - At 
and C ,  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

t , + b t  
(22) 

in which t, is defined by Eq. 17. 



Eqs. 15 and 20 can be combined with Eq. 17 yielding 

Eq. 23, then, provides a method for estimating K from physical and storm 
characteristics for a planar surface and a constant effective rainfall intensity. 
Length of plane, slope, and rainfall intensity are easily established. Manning's 
n value, perhaps better described as a roughness index, must be determined 
experimentally for artificial surfaces, such as simulated turf. For concrete and 
certain other common surfaces, n values may be obtained from standard references 

M I =  Center of Mass Rainfall  Excess 
M V  = 50% of Total  Runoff Volume 

50% of Rainfall  Excess = 50% of Runoff Volume 

:. Area I + Area IT- Area A = Area II + Area III - Area A 

:.Area I = Area m 
:. S, i ( M V  - M I )  = it50 

T I M E  

FIG. 3.-Theoretical Equilibrium Hydrograph 

(1). Overland flow n values should be distinguished, however, from open channel 
values. 

To be generally useful, application of Eq. 23 must be extended to more 
complicated situations, such as an actual storm on a complex urban basin. 
The question naturally arises as to the validity of such extrapolation. This study 
assumed that a small watershed could be adequately represented as a planar 
surface and that the appropriate value of i in Eq. 23 was the maximum A t-minute 
effective rainfall intensity, in which A t  is the computation interval chosen to 
provide reasonable definition of the unit hydrograph. Representation of a 
catchment as a planar surface is a common assumption in models that use 
kinematic routing to define overland flow, such as the Storm Water Management 



Model (15). If necessary, a basin can be subdivided so as to better approximate 
planar surfaces. In the small watersheds where the SLR model is applicable, 
most storms of interest, including design storms, are characterized by a short, 
relatively high-intensity burst of rain which causes the peak discharge to occur. 
Thus, it was reasoned that the maximum effective rainfall intensity of duration 
equal to the computation interval A t  would be the appropriate value of i in 
Eq. 23. 

Representative values of length, slope, and roughness index will vary in an 
urban basin depending on both the existence of an effective storm drain system 
and on the severity of the storm being considered. Three extreme situations 
can be envisioned. First, if relatively light rain falls in a basin with no storm 
drain system, runoff would be conveyed to the basin outlet by streets and 

TABLE 1 .-Watershed Characteristics 

other hydraulically connected impervious areas. In this case, a representative 
length of flow path and basin slope can be estimated from topographic maps. 
The appropriate roughness index or n value would depend on the type of surfaces 
comprising the impervious areas. 

A second situation is that of a relatively light rain falling in a highly sewered 
basin. Under these circumstances, length, slope, and roughness index would 
be based on sewer system characteristics rather than basin characteristics, 
assuming that the "inlet" time is small compared with the travel time in the 

Number 
of 

storms 
studled 

(9) 

1 

2 

3 

2 

storm drain. An alternative to Eq. 23 in this case is the procedure suggested 
by Stubchaer (16,17). Storage coefficient, K, was set equal to the travel time 
through the basin, calculated by summing the initial (overland flow) time, street 
travel time, and storm drain travel time. Initial times were estimated from 
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" Mean t~ave l  distance 
b ~ e a n  seweI slope 
Note: 1 ft = 0 305 m 

Source 
of 

data 
(8) 

(12) 

(3) 
USGS 

(13) 

(16,171 

(2) 

Imper- 
VIOUS 

cover, 
as a 
per- 

cent- 

age 
(6) 

40 

25 

27 

22 

44 

Number 

(1 )  

1 

2 
I 

3 

4 

5 

n- 
value 
used 

(7)  

0 02 

0 03 

0025 

0 019 

Area, 
in 

square 
m ~ l e s  

(square 
k ~ l o -  

meters) 
(3)  

11 9 

(30 9) 

0 13 

(0 34) 
2 3 1  

(6 0) 
0 6 1  

(I 6) 

0 22 

(057) 

Watershed 

(2) 

El Modena-Irvine Chan- 
nel at M y f o ~ d  Road, 
Orange County, Calif 

Agua Fria Tributary at 
Youngtown, Ariz 

Walle~ Creek at 38th 
Street, Austin, Tex 

Victoria S t ~ e e t  S t o ~ m  
Drain, Santa Barba~a ,  
Calif 

17th Street S t o ~ m  D~a in ,  
Louisville, Ky 

Length, 
~n 

miles 
(kilo- 

meters) 

(4) 

6 35 
(10 22) 

0 76 

(1 22) 
437  

(7 04) 
2 1 8  

(3 51) 

0 42" 

(068) 

Slope, 
in 

feet 

per 
foot 

(5) 

0 0098 

0 0030 

00089 

00609 

0 0 0 3 8 ~  



nomographs. Flow times, other than initial times, were computed from the shallow 
triangular channel equation 

The parameters in Eq. 24 have the same meaning as in Manning's equation. 
Parameter Z is the channel side slope. The value of n was assumed to be 

STORAGE (CFS MIN. X 10') 

FIG. 4.-Storage-Outflow Loop, Agua Fria Tributary at Youngtown, Ariz., Flood of: 
(a) Sept. 5, 1970, (b) Oct. 16, 1964 

0,015, To use Eq. 24 on depth must be assumed; factors S and Zcan be measured. 
The actual sewer flow velocity, thus travel time, of a sewer running between 
one-half and full capacity varies between narrow limits, but to consider the 
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velocity constant requires an implicit assumption that the computed hydrograph 
is not sensitive to small changes in K. - 

A third situation would occur when a very severe storm is being considered, 
such as is required for flood insurance studies, for example. Most urban storm 
drain systems would likely be greatly overtaxed, with a major portion of the 
runoff proceeding to the basin outlet as overland flow. Although similar to 
the first situation described previously, here the streets have insufficient capacity 

TABLE 2.-Storage Coefficients, K 

0 

0 4 

0 8 

1 2  

1 6  Excess - 

Watershed 
(1 )  
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FIG. 5.-Reconstitution, Agua Fria Tributary at Youngtown, Ariz., Flood of Sept. 
5,1970 

to carry the total flow. The result is a lower average flow velocity and longer 
travel times, accounted for in Eq. 23 by increasing the n value. Due to the 
large flow, the length of flow path may change, and ponding may also have 
to be considered. 

It can be seen, then, that considerable engineering judgment must be exercised 
when using Eq. 23 in a complex urban situation. The same type of judgment, 
however, is necessary when using virtually any of the available models. 



Two classes of data were used to verify the SLR model. The first class 
was data from an experimental program conducted by the Los Angeles District, 

0 
1500 1600 1700 1800 1900 2000 2100 

T lME IN HOURS 

VOLUMES ( 1  1 Excess Rainfall 
= 6,2 Acre Feet 

( 2 :  DSseirsd Hydragraph 
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FIG. 6.-Reconstitution, Agua Fria Tributary at Youngtown, Ariz., Flood of Oct. 16, 
1964 

TIME ON 8 JULY 1913 (HOURS) 

FIG. 7.-Reconstitution, Waller Creek at 38th St., Flood of July 8, 1973, 1200-1 900 

U. S. Army Corps of Engineers (1 8) in which different combinations of rainfall 
intensity and basin characteristics were simulated on a physical model. The 



results of these simulations agreed closely with the SLR model and are documented 
in Ref. 9. 

The second class of data was extracted from available engineering literature 
except for the Oct. 16, 1964 storm event on the Agua Fria Tributary watershed, 
which was obtained from the United States Geological Survey. These data having 
been collected from actual watersheds are of more interest, though only two 
of the five watersheds listed in Table 1 are included in this paper. Again, Ref. 
9 gives the results of all five. 

The four. sets of data included in this paper comprise the worst case, the 
best case, and two "average" cases. The watersheds used were the Agua Fria, 
Waller Creek, and 17th Street Storm drain. Their characteristics are examined 
in the following paragraphs. 

The 0.13-sq mile (0.34-km2) Agua Fria Tributary catchment in Youngtown, 
Ariz. is a small, flat, residential area drained by street flow. It is nearly rectangular 

VOLUMES I1 Excess Rainfall 
= 2.75 Acre Feet 

( 2  Observed Hydrograph 
= 2.81 Acre Feet 

( 3  ) Linear Reservoir 
= 2.69 Acre Feet 

LAG TIME ( 1 )  Measured = 17 Min 
( 2 )  Computed = 20 Min. 

i = 1.44 In. Hr. 

1130 1800 1830 1930 

TIME ON 6 AUG. 1947 (HOURS) 

FIG. 8.-Reconstitution, 17th Street Storm Drain, Flood of Aug. 6, 1947 

in shape, with streets running essentially parallel to the watershed boundaries. 
Hydraulically connected impervious cover was estimated from field inspection 
to be 25%. 

The 2.31-sq mile (6-km2) Waller Creek watershed lies entirely within the 
City of Austin, Tex., with headwaters originating in the northern part of the 
city. A storm drain system exists within the basin (details not readily available). 
Hydraulically connected impervious cover was estimated to be 27% (13). Ratios 
of runoff to rainfall for the storm used in this study confirm this figure. 

The 0.22-sq mile (0.57-km') 17th Street basin is one of a number of highly 
urbanized, small drainage areas in Louisville, Ky. included in an extensive program 
of measurement and analysis of hydrographs of storm sewer flow carried out 
by the Louisville District of the U.S. Army Corps of Engineers during the 
years 1945-1949, The watershed was estimated to be 83% impervious, with 
a total runoff to total rainfall ratio for small storms of 44% (2). 



Evidenct of both the nonlinearity of the runoff process and the appropriateness 
of the relationship for K in the model can be seen by constructing the 
storage-outflow loops shown in Figs. 4(a) and 4(b). The loops were constructed 
by plotting observed end of period outflow versus end of period storage calculated 
by Eq. 9. The coefficient K is equal to the ratio of the change in storage 
A S  to the change in outflow AQ. For a good portion of the various loops, 
A S l A Q  very closely approximates K, as computed by Eq. 23. In other parts 
of the loops, K is obviously a poor representation of the slope of the storage- 
outflow relationship. Similar loops are shown in the study in Ref. 13. 

Of the watersheds studied, the most valuable flood events satisfied the following 

TABLE 3.-Sensitivity of K 

WATERSHED 

Y.S.S.D. 
DA = 388 Acre 
Imp = 0,22 
API-1.36 In, 
Fo = 0.23 In. / Hr, 

Parameter i n  Eq.. 32 
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STORM OF 1 / 2 1 / 6 1  
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Runofl=Z.II In, 

Santa Barbara Urban 
Hydrograph Method 

Change i n  parameter, 
as a percentage 

(2) 

0 1 2 3 1 5 6 1 8  

TIME (hours) 

Change i n  K, 
as a percentage 

(3) 

FIG. 9.-Effects of 20% Change in K for Short, Intense Storm 

criteria: (1) Storms were relatively isolated in time (i.e., were preceded and 
followed by dry periods); (2) storms exhibited approximately uniform spatial 
distribution over the entire watershed; and (3) runoff hydrographs had a single, 
well defined peak followed by unsustained recession. The loss functions and 
base flow separation techniques used in the referenced data source were also 
used in this study. Although not treated rigorously herein, the determination 
of accurate loss and base flow rates are nevertheless important, especially when 
comparing measured lag times with computed values. If the storm being considered 
is small, however, the influence of losses and base flow is negligible, as most 
runoff would come from impervious areas. 

For several events that exhibited a single predominant peak, lag times T ,  



were determined by taking moments of rainfall excess and direct runoff about 
a time line, say t = 0. These "measured" values of T, are listed in Table 
2, together with calculated K values. The maximum difference is about 18%. 

The validity of any hydrologic model is best tested by the model's ability 
to reproduce observed events. Data obtained from the experimental program 
conducted by the U.S. Corps of Engineers (18) comes closest to matching 
conditions assumed in the derivation of En,, 25; however, as stated previously 

TABLE 4.-Effect of 20% Change in K on Peak Flows for Victoria Street Storm 
Draina 

"From Ref. 17. 
Note: 1 cfs = 28 L/sec.. 

Storm 
( 1  

1958 

1967 

0 
0 1 2 3 4 5 6 1 8  

TIME (hours I 

WATERSHED 

V.S.S.O. 
DA = 388 Acre 
Imp = 0 22 

9 =422 K =  0.12 hr AP1'2.33 In 
FozO 32 In. Hr 

STORM OF 1 3 58 

R a m - 1  58 In 
Runoff = l  54 In 

Santa Barbara Urban 
Hydrograph Method 

t (c ) ,  i n  hours 
(2)  

0.48 
0..60 
0.72 
0.48 
0.60 
0..72 

FIG. 10.-Effects of 20% Change in K for Long, Steady Storm 

only the reconstitutions of observed flood events in actual urban basins are 
shown in Figs. 5-8. The maximum difference in peak is about 20% for catchments 
other than Waller Creek; most reproduced peaks are within 5% of the observed 
peak. Perhaps coincidentally, the time difference between computed and observed 
peaks is often approximately equal to K/2. Studying other storms on Waller 
Creek indicate that the generally unsatisfactory reproductions typified by Fig. 
7 are probably caused by nonuniform rainfall distribution over the basin during 
these storm events. 

Peak flow, i n  cubic 
feet per second 

(3)  
549 
476 
422 
367 
359 
350 

Difference 

(4) 

+ 15..3% 
- 

-11.3% 
+2..2% 
- 

-2.5% 



The impact on K of varying the parameters in Eq. 23 is shown in Table 
3. Increasing each parameter, in turn, by 20% changes K by 6%-12%. However, 
the effect on the calculated peak flow of underestimating, or overestimating 
K is dependent on the distribution of effective rainfall (16,17). Figs. 9 and 
!C show that f ~ r  a high intznsiiy, shori diiraiion storm, the effect can be quite 
pronounced. In this case, routing through the watershed had a significant impact. 
As can be seen in Table 4, the same variation in K had little effect on a 
longer duration, less intense storm. Runoff rates were nearer equilibrium, and 
routing was not so important. In the course of an unpublished Los Angeles 
District, Corps of Engineers study using the SLR model, n values were changed 
as much as 90%, with a resultant change in peak of about 25%. 

Use of Eq. 23 is a deviation from traditional unit hydrograph theory in that 
unit hydrograph parameters are usually considered to be independent of storm 
characteristics. However, it is well known that unit hydrographs for a particular 
basin do vary from storm to storm, and sufficient evidence exists to establish 
the variability of K with rainfall characteristics. Thus, the model used in this 
study could be thought of as a quasilinear model. The transformation of rainfall 
excess to direct runoff is accomplished by a linear system model, but, instead 
of using a unique response function applicable to a basin, the response function 
is redefined for each storm event. 

Because the SLR model unit hydrograph always peaks A t  time units (equal 
to the computation interval) after beginning of rainfall excess, use of the model 
is restricted to small, "flashy" watersheds. 

The senior writer wishes to express thanks to the U. S. Army Corps of Engineers 
for supporting this study. 
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